Refine Your Search

Topic

Search Results

Journal Article

Computational-Based Aerodynamic Design for a Formula SAE Vehicle

2018-03-01
Abstract The computational analysis and design of an aerodynamics system for a Formula SAE vehicle is presented. The work utilizes a stochastic-approximation optimization (SAO) process coupled with a computational fluid dynamics (CFD) solver. The methodology is presented in a general manner, and is applicable to other complex parametrizable systems. A mix of discrete and continuous variables is established to define the airfoil profile, location, sizing and angle of all wing elements. Objectives are established to maximize downforce, minimize drag and maintain a target vehicle aerodynamic balance. A combination of successive 2D and 3D CFD evaluations have achieved vehicle aerodynamic performance targets at a minimal computational cost.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

Impact of Rear Spoiler on Vehicle Braking Longitudinal Dynamics

2021-04-30
Abstract During vehicle braking, friction forces generated on the vehicle tires and the vehicle resisting aerodynamic forces play a critical role that impact the vehicle’s longitudinal braking dynamics such as stopping distance and time. These forces are mainly the tires’ braking and rolling resisting forces, vehicle lift, and drag forces. The vehicle aerodynamic forces cannot be neglected due to their impact on the vehicle’s longitudinal dynamics, especially at high vehicle speeds. This article investigates the impact of the vehicle’s rear spoiler on both vehicle aerodynamic forces and longitudinal dynamic, such as stopping distance and time. A computational fluid dynamics (CFD) model using ANSYS-Fluent® is employed to precisely estimate the vehicle’s aerodynamic forces in the case of a vehicle without and with a rear spoiler.
Journal Article

Aerodynamic Characterization of a Full-Scale Compact Car Exposed to Transient Crosswind

2021-04-07
Abstract The transient surface pressure over a full-scale, operational compact automotive vehicle—a Volkswagen Golf 7—exposed to transient crosswinds with relative yaw angles of β = 22-45° has been characterized. Experiments were performed at the BMW side-wind facility in Aschheim, Germany. Measurements of the incoming flow in front of the car were taken with eleven five-hole dynamic pressure probes, and separately, time-resolved surface pressure measurements at 188 locations were performed. Unsteady characteristics (not able to be identified in quasi-steady modelling) have been identified: the flow in separated regions on the vehicle’s leeward side takes longer to develop than at the windward side, and spatially, the vehicle experiences local crosswind as it gradually enters the crosswind.
Journal Article

Torque and Pressure CFD Correlation of a Torque Converter

2019-08-22
Abstract A torque converter was instrumented with 29 pressure transducers inside five cavities under study (impeller, turbine, stator, clutch cavity between the pressure plate and the turbine shell). A computer model was created to establish correlation with measured torque and pressure. Torque errors between test and simulation were within 5% and K-Factor and torque ratio errors within 2%. Turbulence intensity on the computer model was used to simulate test conditions representing transmission low and high line pressure settings. When turbulence intensity was set to 5%, pressure simulation root mean square errors were within 11%-15% for the high line pressure setting and up to 34% for low line pressure setting. When turbulence intensity was increased to 50% for the low line pressure settings, a 6% reduced root mean square error in the pressure simulations was seen.
Journal Article

Passive Flow Control on a Ground-Effect Diffuser Using an Inverted Wing

2018-08-13
Abstract In this experimental and computational study a novel application of aerodynamic principles in altering the pressure recovery behavior of an automotive-type ground-effect diffuser was investigated as a means of enhancing downforce. The proposed way of augmenting diffuser downforce production is to induce in its pressure recovery action a second pressure drop and an accompanying pressure rise region close to the diffuser exit. To investigate this concept with a diffuser-equipped bluff body, an inverted wing was situated within the diffuser flow channel, close to the diffuser exit. The wing’s suction surface acts as a passive flow control device by increasing streamwise flow velocity and reducing static pressure near the diffuser exit. Therefore, a second-stage pressure recovery develops along the diffuser’s overall pressure recovery curve as the flow travels from the diffuser’s low pressure, high velocity inlet to its high pressure, low velocity exit.
Journal Article

A Predictive Tool to Evaluate Braking System Performance Using Thermo-Structural Finite Element Model

2019-10-14
Abstract The braking phenomenon is an aspect of vehicle stopping performance where with kinetic energy due to the speed of the vehicle is transformed into thermal energy produced by the brake disc and its pads. The heat must then be dissipated into the surrounding structure and into the airflow around the brake system. The thermal friction field during the braking phase between the disc and the brake pads can lead to excessive temperatures. In our work, we presented numerical modeling using ANSYS software adapted in the finite element method (FEM), to follow the evolution of the global temperatures for the two types of brake discs, full and ventilated disc during braking scenario. Also, numerical simulation of the transient thermal analysis and the static structural analysis were performed here sequentially, with coupled thermo-structural method.
Journal Article

CFD and Wind Tunnel Analysis of the Drag on a Human-Powered Vehicle Designed for a Speed Record Attempt

2019-06-07
Abstract A computational fluid dynamics (CFD) and wind tunnel investigation of a human powered vehicle (HPV), designed by the Velo Racing Team at Ostfalia University, is undertaken to analyse the Eco-body’s drag efficiency. Aimed at competing in a high profile HPV speed record competition, the vehicle’s aerodynamic efficiency is shown to compare well with successful recent eco-body designs. Despite several limitations, newly obtained wind tunnel data shows that the corresponding CFD simulations offer an effective tool for analysing and refining the HPV design. It is shown that, in particular, the design of the rear wheel fairings, as well as the ride height of the vehicle, may be optimised further. In addition, refinements to the CFD and wind tunnel methodologies are recommended to help correlation.
Journal Article

Improving the Modelling of Dissociating Hydrogen Nozzles

2019-11-21
Abstract While the design of nozzles for diatomic gases is very well established and covered by published works, the case of a diatomic gas dissociating to monatomic along a nozzle is a novel subject that needs a proper mathematical description. These novel studies are relevant to the definition of nozzles for gas-core Nuclear Thermal Rockets (NTR) that are receiving increased attention for the potential advantages they may deliver versus current generation rockets. The article thus reviews the design of the nozzles of gas-core NTR that use hydrogen as the propellant. Propellant temperatures are expected to reach 9,000-15,000 K. Above 1500 K, hydrogen begins to dissociate at low pressures, and around 3000 K dissociation also occurs at high pressures. At a given temperature, the lower the gas pressure the more molecules dissociate, and H2 → H + H. The properties of the gas are a function of the mass fractions of diatomic and monatomic hydrogen x H2 and x H = 1 − x H2.
Journal Article

Mechanical Response of Hybrid Laminated Polymer Nanocomposite Structures: A Multilevel Numerical Analysis

2020-10-19
Abstract The prediction of mechanical elastic response of laminated hybrid polymer composites with basic carbon nanostructure, that is carbon nanotubes and graphene, inclusions has gained importance in many advanced industries like aerospace and automotive. For this purpose, in the current work, a hierarchical, four-stage, multilevel framework is established, starting from the nanoscale, up to the laminated hybrid composites. The proposed methodology starts with the evaluation of the mechanical properties of carbon nanostructure inclusions, at the nanoscale, using advanced 3D spring-based finite element models. The nanoinclusions are considered to be embedded randomly in the matrix material, and the Halpin-Tsai model is used in order to compute the average properties of the hybrid matrix at the lamina micromechanics level.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Critical Inlet Pressure Prediction for Inline Piston Pumps Using Multiphase Computational Fluid Dynamics Modelling

2021-02-15
Abstract Inline piston pumps are extensively used in aircraft hydraulic systems. They can be found in engine-driven large-sized hydraulic pumps and zonal electric motor-driven mid-small sized pumps. Inline piston pumps are positive displacement pumps with variable volumetric flow controls. Positive displacement pumps can provide a variable flow rate over a wide range of suction pressures. Aircraft fly at high altitudes, and therefore these pumps have to work in extreme conditions such as low atmospheric pressure, low temperature. At low inlet pressures, the pump is highly susceptible to cavitation, i.e., insufficient filling capacity. The pressure below which pump flow rate drops drastically is known as critical inlet pressure. Extensive research has been carried out to study cavitation in inline piston pumps.
Journal Article

Aerodynamic Analysis of Cooling Airflow for Different Front-End Designs of a Heavy-Duty Cab-Over-Engine Truck

2018-04-07
Abstract Improving the aerodynamics of heavy trucks is an important consideration in the strive for more energy-efficient vehicles. Cooling drag is one part of the total aerodynamic resistance acting on a vehicle, which arises as a consequence of air flowing through the grille area, the heat exchangers, and the irregular under-hood area. Today cooling packages of heavy trucks are dimensioned for a critical cooling case, typically when the vehicle is driving fully laden, at low speed up a steep hill. However, for long-haul trucks, mostly operating at highway speeds on mostly level roads, it may not be necessary to have all the cooling airflow from an open-grille configuration. It can therefore be desirable for fuel consumption purposes, to shut off the entire cooling airflow, or a portion of it, under certain driving conditions dictated by the cooling demands. In Europe, most trucks operating on the roads are of cab-over-engine type, as a consequence of the length legislations present.
Journal Article

CFD Windshield Deicing Simulations for Commercial Vehicle Applications

2018-04-06
Abstract Windshield deicing performance is a key metric for HVAC system development and optimization within the sphere of commercial vehicle design. The primary physical parameters that drive this metric are pressure drops in the HVAC ducting, flow rate of the air through the system, and the transient vent temperature rise affected by engine coolant warm-up. However, many design engineers also have to take underhood and instrument panel (IP) space constraints into consideration while trying to optimize a new HVAC system design. This study leverages historical deicing simulation methodologies in conjunction with modern computational horsepower so as to optimize the HVAC ductwork in the studied commercial truck at the beginning of the design phase. By iterating on a design in the computational domain under steady-state and transient flow and thermal conditions, a robust HVAC system design can be created even prior to the prototyping stage of development.
Journal Article

Computational Fluid Dynamic Simulation of In-Cylinder Pressures to Validate High-Range VCR

2018-10-22
Abstract This article serves as a proof-of-concept and feasibility analysis regarding a variable compression ratio (VCR) engine design utilizing an exhaust valve opening during the compression stroke to vary the compression ratio instead of the traditional method of changing the cylinder or piston geometry patented by Ford, Mercedes-Benz, Nissan, Peugeot, Gomecsys, et al. [1]. In this concept, an additional exhaust valve opening was used to reduce the virtual compression ratio of the engine, without geometric changes. A computational fluid dynamic model in ANSYS Forte was used to simulate a single-cylinder, cold flow, four-stroke, direct injection engine cycle. In this model, the engine was simulated at a compression ratio of 10:1. Then, the model was modified to a compression ratio of 17:1. Then, an additional valve opening at the end of the compression stroke was added to the 17:1 high compression model.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

An Investigation on Drilling of Epoxy Composites by Taguchi Method

2021-04-21
Abstract Effects of process parameters such as rotational speed, feed rate, and drill diameters on the drilling behavior of basalt-epoxy-based composites including 2.5 wt.% Al2O3 particles manufactured by mixing and compression method were investigated by Taguchi’s technique. The experimental results showed that the burr height (BH) increased considerably almost linearly with an increase in the drill diameter, while it remained stable with speed and decreased the feed rate slightly. There was an excellent correlation between the control factors and responses, BH of basalt fiber-reinforced plastics (BFRPs) through the Taguchi approach. The model had an adjusted R2 value of 96.3%. Generally, the inclusion of Al2O3 particles in BFRP increased its cutting force properties. Optimized drilling conditions for the input variables to produce the lowest response of the BH for composites were rotational speed of 560 rpm and feed rate of 0.28 mm/rev and a drill diameter of 4.5 mm.
Journal Article

Optimization Approach of Turning Process of Multiwalled Carbon Nanotubes-Aluminium Oxide/Epoxy Hybrid Nanocomposites

2021-06-15
Abstract The high quality of the machined parts in a short time is a research challenge for enhancing these parts’ operating performance. Optimizing the machining operations and adequately selecting the cutting parameters can solve this challenge. Thus, this work proposes an optimization approach of the machining process parameters of epoxy hybrid nanocomposites reinforced by multiwall carbon nanotubes (MWCNTs) and aluminum oxide (Al2O3). Cutting speed (V), feed rate (F), insert nose radius, and depth of cut (D) were the machining parameters. The roundness error and surface roughness (Ra) were selected as process response control parameters. The optimization techniques such as response surface method (RSM) and grey relation analysis (GRA) with the variance of analysis (ANOVA) were involved. Forty experimental runs were performed. The RSM optimization and ANOVA results showed that the insert nose radius and F are the most significant factors that affect the Ra.
Journal Article

Investigation on Underhood Thermal Analysis of Truck Platooning

2018-03-22
Abstract This paper presents a combined aero-thermal computational fluid dynamic (CFD) evaluation of platooning medium duty commercial vehicles in two highway configurations. Thermal analysis comparison is made between an approach that includes vehicle drag reduction on engine heat rejection and one that does not by assuming a constant heat rejection based on open road conditions. The paper concludes that accounting for aerodynamic drag reduction on engine heat load provides a more real world evaluation than assuming a constant heat load based on open road conditions. A 3D CFD underhood thermal simulations are performed in two different vehicle platooning configurations; (i) single-lane and (ii) two-lane traffic conditions. The vehicle platooning consists of two identical vehicles, i.e. leading and trailing vehicle. In this work, heat exchangers are modeled by two different heat rejection rate models.
X