Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

ISRU Production of Life Support Consumables for a Lunar Base

2007-07-09
2007-01-3106
Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5°S, 0°E) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.
Technical Paper

Demonstration of Oxygen Production on the Moon and Mars

1997-07-01
972498
Scientists and engineers at NASA are currently developing flight instruments which will demonstrate oxygen production on the Moon and Mars. REGA will extract oxygen from the lunar regolith, measure implanted solar wind and indigenous gases, and monitor the lunar atmosphere. MIP will demonstrate oxygen production on Mars, along with key supporting technologies including filtration, atmospheric acquisition and compression, thermal management, solar cell performance, and dust removal.
Technical Paper

Reducing the Risk of Human Space Missions With INTEGRITY

2003-07-07
2003-01-2572
The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

1993-07-01
932091
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Oxygen From Lunar Soils

1996-07-01
961595
We have conducted experiments on 16 lunar soils and 3 lunar volcanic glass samples to study the extraction of oxygen, an important resource for future lunar bases. The samples were chosen to span the range of composition and mineralogy represented in the Apollo collection. Each sample was reduced in flowing hydrogen for 3 hours at 1050°C. The dominant effect was reduction of Fe2+ (as FeO) in minerals and glass to iron metal, with concomitant release of oxygen. Oxygen extraction was strongly correlated with initial Fe2+ abundance but varied among mineral and glass phases. The experimental reduction of lunar soil and glass provides a method for assessing the oxygen production potential for sites on the lunar surface from lunar orbit. Our results show that oxygen yield from lunar soils can be predicted from knowledge of only one parameter, total iron content. This parameter can be measured from orbit by gamma ray spectrometry or multispectral imaging.
X