Refine Your Search

Topic

Search Results

Technical Paper

Nanoscale Materials for Human Spaceflight Applications: Regenerable Carbon Dioxide Removal Using Single-wall Carbon Nanotubes

2006-07-17
2006-01-2195
The challenges of missions to the Moon and Mars presents NASA with the need for more advanced life support systems, including better technologies for CO2 removal in spacecraft atmospheres and extravehicular mobility units (EMU). Amine-coated single wall carbon nanotubes (SWCNT) have been proposed as a potential solution because of their high surface area and thermal conductivity. Initial research demonstrated the need for functionalization of SWCNT to obtain optimal adherence of the amine to the SWCNT support phase [1]. Recent efforts focus on the development of new methods to chemically bond amines to SWCNT. Synthesis and characterization methods for these materials are discussed and some preliminary materials characterization data are presented. The CO2 adsorption capacity for several versions of SWCNT supported amine-based CO2 scrubber materials is also determined.
Technical Paper

Recent Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

2004-07-19
2004-01-2428
A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas removal performance and operational lifetime of the gas trap have been affected by contamination in the ITCS coolant. However, the gas trap has performed flawlessly with regard to its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. This paper discusses on-orbit events over the course of the last year related to the performance and functioning of the gas trap.
Technical Paper

Effects of Surfactant Contamination on the Next Generation Gas Trap for the ISS Internal Thermal Control System

2004-07-19
2004-01-2429
The current dual-membrane gas trap is designed to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pumps. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Previous testing has shown that a hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal in clean deionized water. This paper presents results of testing to evaluate the effects of surfactant contamination on the steady-state performance of the hydrophobic-only design.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

2003-07-07
2003-01-2566
The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling.
Technical Paper

Enzyme-Enhanced Membranes for Gas Separation

1999-07-12
1999-01-1961
Membranes are highly desirable for separating gases in life-support applications. They are small, light, efficient, selective and require little operational or physical maintenance. Facilitated transport membranes have particularly high flux and selectivity. We created enzyme-based facilitated transport membranes using isozymes and mutants as immobilized arrays alone and in conjunction with polymeric membranes. The enzyme operates efficiently at the low CO2 concentrations encountered in respiratory gases and can bring CO2 to near ambient levels. CO2 flux is greatly enhanced and selectivities for CO2 over O2 of 200:1 or greater are possible. The enzymes are robust and stable for long periods under a variety of storage and use conditions.
Technical Paper

Mir Leak Detection Using Fluorescent Tracer Gases

1999-07-12
1999-01-1938
On June 25, 1997 a docking mishap of a Progress supply ship caused the Progress vehicle to crash into an array of solar panels and puncture the hull of the Spektr module. The puncture was small enough to allow the crew to seal off the Spektr module and repressurize the rest of the station. The Progress vehicle struck the Spektr module several times and the exact location, size, and number of punctures in the Spektr hull was unknown. Russian cosmonauts donned space suits and went inside the Spektr module to repair some electrical power cables and look for the location of the hull breach, they could not identify the exact location of the hole (or holes). The Spektr module was pressurized with Mir cabin air twice during the STS-86 fly around in an attempt to detect leakage (in the form of ice particles) from the module. Seven particles were observed within a 36 second time span, but tracking the path of the individual particles did not pinpoint a specific leak location.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Diode-Laser Spectral Absorption-Based Gas Species Sensor for Life Support Applications

1997-07-01
972388
We present the development of a semiconductor diode laser spectral absorption based gas species sensor for oxygen concentration measurements, intended for life support system monitoring and control applications. Employing a novel self-compensating, noise cancellation detection approach, we experimentally demonstrate better than 1% accuracy, linearity, and stability for monitoring breathing air conditions with 0.2 second response time. We also discuss applications of this approach to CO2 sensing.
Technical Paper

A Thermal Control System Dual-Membrane Gas Trap for the International Space Station

1997-07-01
972410
The dual membrane gas trap filter is utilized in the internal thermal control system (ITCS) as part of the pump package assembly to remove non-condensed gases from the ITCS coolant. This improves pump performance and prevents pump cavitation. The gas trap also provides the capability to vent air that is Ingested into the ITCS during routine maintenance and replacement of the International Space Station (ISS) system orbital replacement units. The gas trap is composed of two types of membranes that are formed into a cylindrical module and then encased within a titanium housing. The non-condensed gas that is captured is then allowed to escape through a vent tube in the gas trap housing.
Technical Paper

A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

2005-07-11
2005-01-3079
A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.
Technical Paper

Assessment of Microbiologically Influenced Corrosion Potential in the International Space Station Internal Active Thermal Control System Heat Exchanger Materials: A 6-Month Study

2005-07-11
2005-01-3077
The fluid in the Internal Active Thermal Control System (IATCS) of the International Space Station (ISS) is water based. The fluid in the ISS Laboratory Module and Node 1 initially contained a mix of water, phosphate (corrosion control), borate (pH buffer), and silver sulfate (Ag2SO4) (microbial control) at a pH of 9.5±0.5. Over time, the chemistry of the fluid changed. Fluid changes included a pH drop from 9.5 to 8.3 due to diffusion of carbon dioxide (CO2) through Teflon® (DuPont) hoses, increases in dissolved nickel (Ni) levels, deposition of silver (Ag) to metal surfaces, and precipitation of the phosphate (PO4) as nickel phosphate (NiPO4). The drop in pH and unavailability of a antimicrobial has provided an environment conducive to microbial growth. Microbial levels in the fluid have increased from <10 colony-forming units (CFUs)/100 mL to 106 CFUs/100 mL.
Technical Paper

Performance Qualification Test of the ISS Water Processor Assembly (WPA) Expendables

2005-07-11
2005-01-2837
The Water Processor Assembly (WPA) for use on the International Space Station (ISS) includes various technologies for the treatment of waste water. These technologies include filtration, ion exchange, adsorption, catalytic oxidation, and iodination. The WPA hardware implementing portions of these technologies, including the Particulate Filter, Multifiltration Bed, Ion Exchange Bed, and Microbial Check Valve, was recently qualified for chemical performance at the Marshall Space Flight Center. Waste water representing the quality of that produced on the ISS was generated by test subjects and processed by the WPA. Water quality analysis and instrumentation data was acquired throughout the test to monitor hardware performance. This paper documents operation of the test and the assessment of the hardware performance.
Technical Paper

Advanced Fiber-Optic Monitoring System for Space-flight Applications

2005-07-11
2005-01-2877
Researchers at Luna Innovations Inc. and the National Aeronautic and Space Administration's Marshall Space Flight Center (NASA MSFC) are developing an integrated fiber-optic sensor system for real-time monitoring of chemical contaminants and whole-cell bacterial pathogens in water. The system integrates interferometric and evanescent-wave optical fiber-based sensing methodologies to provide versatile measurement capability for both micro- and nano-scale analytes. Sensors can be multiplexed in an array format and embedded in a totally self-contained laboratory card for use with an automated microfluidics platform.
Technical Paper

Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

2003-07-07
2003-01-2565
A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected.
Journal Article

Advanced Quartz-Enhanced Photoacoustic Trace Gas Sensor for Early Fire Detection

2008-06-29
2008-01-2091
A spectroscopic trace gas sensor using a distributed feedback diode laser at λ=1.53 µm and based on quartz enhanced photoacoustic spectroscopy technique is described. The sensor is capable of quasi-simultaneous quantification of trace ammonia, hydrogen cyanide, and acetylene (NH3, HCN, and C2H2, respectively) concentrations at ∼100 ppbv levels with a 4s integration time. The sensor design, responsivity, noise, and cross-talk characteristics are reported.
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

Nickel Hydrogen Battery Expert System

1992-08-03
929104
At present, Nickel Hydrogen batteries are tested at Marshall Space Flight Center (MSFC) in support of the Hubble Space Telescope (HST) program. In previous years, Nickel Cadmium batteries were tested at MSFC in support of HST. The Nickel Cadmium Battery Expert System-2 (NICBES-2) was employed on the HST six battery test bed to evaluate the performance of the HST Electrical Power System (EPS). With the beginning of testing of the nickel hydrogen six battery test bed, NICBES-2 had to be converted to NICkel Hydrogen Battery Expert System (NICHES). This paper describes the conversion of the NICBES-2 to the NICHES as well as future plans for NICHES.
Technical Paper

OPAD Status Report: Investigation of SSME Component Erosion

1992-04-01
921030
Significant erosion of preburner faceplates was observed during recent Space Shuttle Main Engine (SSME) test firings at the NASA Technology Test Bed (TTB), Marshall Space Flight Center (MSFC), Al. The OPAD instrumentation acquired exhaust plume spectral data during each test which indicate the occurrence of metallic species consistent with faceplate component composition. A qualitative analysis of the spectral data was conducted to evaluate the state of the engine versus time for each test according to the nominal conditions of TTB firing #17 and #18. In general the analyses indicate abnormal erosion levels at or near startup. Subsequent to the initial erosion event, signal levels tend to decrease towards nominal baseline values. These findings, in conjunction with post-test engine inspections, suggest that in cases under study, the erosion may not have been catastrophic to the immediate operation of the engine.
X