Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Statistical Analysis of Rigid Body Modes of Engine Mounting System Due to Mount Rates Variability

2006-10-31
2006-01-3466
While the engine mount rates need to be optimized to achieve the required frequency alignment and modal decoupling for quality performance, the robustness of the system needs to be studied as well. If a system exhibits acceptable modal characteristics with nominal optimized rates, the sensitivity of the system to variation of the rates from their nominal values affects the robustness of the system. Different factors can cause variation of the rates. Among them are rate changes from part to part arising from manufacturing process. In this paper the effect of mount rates variability on the modal characteristics is discussed. Monte Carlo simulation is used to predict how the rigid body modes and their couplings vary when the rate for each mount changes according to its statistical parameters. Through different examples the statistical variability of the modes to the rates variability is presented.
Technical Paper

Mass Optimization of a Front Floor Reinforcement

2020-01-13
2019-36-0149
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing.
Technical Paper

Light Truck Stabilizer Bar Attachment Non-linear Fatigue Analysis

1998-11-16
982833
The stabilizer bar attachments problem can not be simply analyzed by using linear FEA methodology. The large deformation in the bushing, the elastic-plastic material property in the bushing retainer bracket, and the contact between different parts all add complexity to the problem and result in the need for an analysis method using a non-linear code, such as ABAQUS. The material properties of the bushing were experimentally determined and applied to the CAE model. It was found that using strains to estimate the fatigue life was more accurate and reliable than using stress. Many modeling techniques used in this analysis were able to improve analysis efficiency.
Technical Paper

Real-time Crash Detection and Its Application in Incident Reporting and Accident Reconstruction

2017-03-28
2017-01-1419
Characterizing or reconstructing incidents ranging from light to heavy crashes is one of the enablers for mobility solutions for fleet management, car-sharing, ride-hailing, insurance etc. While crashes involving airbag deployment are noticeable, light crashes without airbag deployment can be hidden and most drivers do not report these incidents. In this paper, we are using vehicle responses together with a dynamics model to trace back if abnormal forces have been applied to a vehicle so as to detect light crashes. The crash location around the perimeter of the vehicle, the direction of the crash force, and the severity of the crashes are all determined in real-time based on on-board sensor measurements which has further application in accident reconstruction. All of this information will be integrated to a feature called “Incident Report”, which enable reporting of minor accidents to the relevant entities such as insurance agencies, fleet managements, etc.
Technical Paper

Steering Column/Instrument Panel NVH Analysis in Full Size Pickup Trucks Using MSC/NASTRAN - Part 1

1996-10-01
962190
Recent surveys of customer satisfaction with full size pickup trucks have raised the standards for passenger comfort and refinement of such vehicles. Customers for this type of vehicle demand performance levels for attributes such as NVH, ride, and handling that previously belonged to luxury passenger cars. Along with the increased passenger comfort, full size pickup trucks must retain a tough image and be as durable as the previous generation trucks. The challenge is to design for NVH performance that can match and surpass many well behaved and “good” NVH passenger cars without any compromise in durability performance. One aspect of “good” NVH is a steering wheel which is free from vibration. As part of the development of a new design for a full sized pick up truck, an NVH subjective rating of 8-9 (10 is maximum) was targeted for the design of steering column/ instrument panel assembly.
Technical Paper

CAE Approach for Light Truck Frame Durability Evaluation Due to Payload Increase

2004-11-16
2004-01-3411
The growing competition of the automotive market makes more and more necessary the reduction of development time and consequently, the increase of the capacity to quickly respond to the launching of the competitors. One of the most costly phases on the vehicle development process is the field durability test, both in function of the number of prototypes employed and the time needed to its execution. More and more diffused, the fatigue life prediction methods have played an important part in the durability analysis via CAE. Nevertheless, in order they can be reliable and really being able to reduce the development time and cost, they need to be provided with load cases that can accurately represent the field durability tests. This work presents a CAE approach used for light trucks in order to get a reasonable understanding of component durability behavior due to payload increase. In general, road load data is not available for a new payload condition.
Technical Paper

One Piece Stamped I-Beam Axle

1980-11-01
801425
Recent accomplishments, made possible by advances in manufacturing and material technology, have led to the development of a one-piece stamped I-Beam axle with ball joints as a replacemet to the forged axle with king pin design. The new stamped I-Beam axle brings with it a number of improvements to Ford's Twin I-Beam suspension system. This paper describes the objectives, improvements, evolution of the design, testing, and the manufacturing process for this latest suspension system improvement on Ford light trucks.
Technical Paper

Evolution of the New Ford Aerostar Impact Extruded Aluminum Wheel

1984-11-01
841694
Ford's continued effort to improve fuel economy in automotive applications has emphasized the need for lightweight components that retain all the toughness associated with Ford truck vehicle characteristics. The application of an impact extrusion process to wheel design and manufacture, for Ford Aerostar, provides strength, performance and style more efficiently than other traditional processes. It results in a valuable 33% weight saving over comparable HSLA steel wheels, and provides the customer with uncompromised value. The Ford Aerostar Impact Extruded Aluminum Wheel was designed to be of one-piece construction, manufactured from a less than 1″ thick aluminum wafer-shaped blank. The process permits manufacture in half the steps of a conventional stamped steel wheel, and eliminates extensive machining required with forged or cast aluminum wheels.
Journal Article

Cruise Controller with Fuel Optimization Based on Adaptive Nonlinear Predictive Control

2016-04-05
2016-01-0155
Automotive cruise control systems are used to automatically maintain the speed of a vehicle at a desired speed set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods. The objective of this paper is to validate an Adaptive Nonlinear Model Predictive Controller (ANLMPC) implemented in a vehicle equiped with standard production Powertrain Control Module (PCM). Application and analysis of Model Predictive Control utilizing road grade preview information has been reported by many authors, namely for commercial vehicles. The authors reported simulations and application of linear and nonlinear MPC based on models with fixed parameters, which may lead to inaccurate results in the real world driving conditions. The significant noise factors are namely vehicle mass, actual weather conditions, fuel type, etc.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Road User Risk with Older Light Trucks

1999-04-27
1999-01-2258
Do older light trucks, often with second (and subsequent) owners, present a higher risk to either their own occupants or to other road users? And is the safety record for newer trucks better or worse than the record for their older counterparts? To answer these questions, fatalities in crashes involving at least one light truck were examined using the Fatal Analysis Reporting System (FARS). Fatality rates for both occupants of the light truck and for other road users (occupants of other motor vehicles, pedestrians, etc.) in these crashes were computed, based both on the number of registered vehicles and on the vehicle miles of travel. Two trends in these fatality rates are observed. First, as light trucks age, a consistent decline is found in risk both to their own occupants and to other road users. Second, a distinct decrease is found in road user risk for newer light trucks compared to older light trucks when they were new, both for their own occupants and for other road users.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

Application of the Power-Based Fuel Consumption Model to Commercial Vehicles

2021-04-06
2021-01-0570
Fuel power consumption for light duty vehicles has previously been shown to be proportional to vehicle traction power, with an offset for overhead and accessory losses. This allows the fuel consumption for an individual powertrain to be projected across different vehicles, missions, and drive cycles. This work applies the power-based model to commercial vehicles and demonstrates its usefulness for projecting fuel consumption on both regulatory and customer use cycles. The ability to project fuel consumption to different missions is particularly useful for commercial vehicles, as they are used in a wide range of applications and with customized designs. Specific cases are investigated for Light and Medium Heavy- Duty work trucks. The average power required by a vehicle to drive the regulatory cycles varies by nearly a factor 10 between the Class 4 vehicle on the ARB Transient cycle and the loaded Class 7 vehicle at 65 mph on grade.
Technical Paper

Adaptive Nonlinear Model Predictive Cruise Controller: Trailer Tow Use Case

2017-03-28
2017-01-0090
Conventional cruise control systems in automotive applications are usually designed to maintain the constant speed of the vehicle based on the desired set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods namely adopting the Model Predictive Control (MPC) technology utilizing the road grade preview information and allowance of the vehicle speed variation. This paper is focused on the extension of the Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier by application to the trailer tow use-case. As the connected trailer changes the aerodynamic drag and the overall vehicle mass, it may lead to the undesired downshifts for the conventional cruise controller introducing the fuel economy losses. In this work, the ANLMPC concept is extended to avoid downshifts by translating the downshift conditions to the constraints of the underlying optimization problem to be solved.
Journal Article

The GTU: A New Realistic Generic Pickup Truck and SUV Model

2020-04-14
2020-01-0664
Traditionally, ground vehicle aerodynamics has been researched with highly simplified models such as the Ahmed body and the SAE model. These models established and advanced the fundamental understanding of bluff body aerodynamics and have generated a large body of published data, however, their application to the development of passenger vehicles is limited by the highly idealized nature of their geometries. To date, limited data has been openly published on aerodynamic investigations of production vehicles, most likely due to the proprietary nature of production vehicle geometry. In 2012, Heft et al. introduced the realistic generic car model ‘DrivAer’ that better represents the flow physics associated with a typical production vehicle.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Journal Article

A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests

2023-06-27
2022-22-0005
In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated.
Technical Paper

Evaluation of Drivers of Very Large Pickup Trucks: Size, Seated Height and Biomechanical Responses in Drop Tests

2023-04-11
2023-01-0649
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height.
X