Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Journal Article

Dual Phase High Temperature Heat Release Combustion

2008-04-14
2008-01-0007
To allow the HCCI vehicles to enter the market in the future, it is important to investigate the combustion deviations and operational range differences between the same research octane number fuels. In this paper, eighteen kinds of two hydrocarbon blended fuels, which were composed of n-heptane and another hydrocarbon, such as iso-octane, diisobutylene, 4-methyl-1-pentene, toluene or cyclopentane, were evaluated. Those fuels were blended to have the same research octane numbers of 75, 80, 85 and 90 by changing the blending volume ratio of n-heptane and counterpart hydrocarbon. Intake air was supercharged to 155 kPa abs and its temperature was kept at 58 °C. The HCCI engine was operated at 1000 rpm. Neither hot EGR, nor any other combustion stratification system was utilized in order to investigate the purely hydrocarbon effects on HCCI combustion.
Journal Article

Realization of Dual Phase High Temperature Heat Release Combustion of Base Gasoline Blends from Oil Refineries and a Study of HCCI Combustion Processes

2009-04-20
2009-01-0298
It was reported that n-heptane and toluene blended fuels (NTL series fuels) showed the dual phase high temperature heat release (DP-HTHR) combustion in a previous SAE paper [1]. DP-HTHR has the potential to enlarge the engine operational range to high load conditions and lower the engine combustion noise. Further research has been reported in this paper. Initial interests were in the combustion characteristics of a second “bump” in the high temperature heat release (2nd HTHR) in DP-HTHR, since this kind of two-stage combustion appears, when CO oxidation radically occurs over the 1450K temperature range.
Journal Article

A Study of Volumetric Ignition Using High-Speed Plasma for Improving Lean Combustion Performance in Internal Combustion Engines

2008-04-14
2008-01-0466
It is well known that ultra-lean combustion can result in higher thermal efficiency, better fuel economy, and greatly reduced NOx emissions. Accomplishing ultra-lean combustion is very difficult with a conventional spark plug, and ignition instability can be cited as one of the factors. Therefore, it is thought that ignition system innovation is important for the achievement of ultra-lean combustion in gasoline engines. This study investigated high-speed plasma ignition as a new ignition system for internal combustion engines. High-speed plasma refers to the transient (non-equilibrated) phase of plasma before formation of an arc discharge; it is obtained by applying high voltage with an ultra-short pulse between coaxial cylindrical electrodes. High-speed plasma can inherently form a multi-channel discharge, with the electrical discharge spreading over a much larger volume than a spark discharge does.
Journal Article

Investigation on Transient Emissions of a Turbocharged Diesel Engine Fuelled by HVO Blends

2013-04-08
2013-01-1307
Transient emissions of a turbocharged three-litre V6 diesel engine fuelled by hydrogenated vegetable oil (HVO) blends were experimentally investigated and compared with transient emissions of diesel as reference. The transient emissions measurements were made by highly-dynamic emissions instrumentations including Cambustion HFR500, CLD500 and DMS500 particulate analyzer. The HVO blends used in this study were 30% and 60% of HVO in diesel by volume. The transient conditions were simulated by load increases over 5 s, 10 s and 20 s durations at a constant engine speed. The particulate, NO, HC concentrations were measured to investigate the mechanism of emission formation under such transient schedules. The results showed that as the load increased, NO concentrations initially had a small drop before dramatically increasing for all the fuels investigated which can be associated with the turbocharger lag during the load transient.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

Simultaneous Attainment of Low Fuel Consumption High Output Power and Low Exhaust Emissions in Direct Injection SI Engines

1998-02-01
980149
This paper describes simultaneous attainment in improving fuel consumption, output power and reducing HC emissions with a direct injection S.I. engine newly developed in Nissan. Straight intake port is adopted to increase discharge coefficient under WOT operation and horizontal swirl flow is generated by a swirl control valve to provide stable stratified charge combustion under part load conditions. As a result, fuel consumption is reduced by more than 20% and power output is improved by approximately 10%. Moreover, unburned HC is reduced by equivalently 30% in engine cold start condition. An application of diagnostic and numerical simulation tools to investigate and optimize various factors are also introduced.
Technical Paper

Auto-Ignition Characteristics of Hydrocarbons and Development of HCCI Fuel Index

2007-04-16
2007-01-0220
It is known that the regular gasoline and primary reference fuel (PRF), that have the same research octane number, show the different HCCI engine performance, because of the different phasing and heating value of low temperature heat release. This means that the research octane number is not an “all-round” auto-ignition index, and another index must be developed to evaluate the HCCI combustion characteristics. In this paper, eleven pure hydrocarbon components were blended into twenty three different kinds of model fuels (surrogate fuels), labeled BASE, MC01-MC11 and K01-K11, and the HCCI engine tests were performed under five different intake air temperature conditions to change the auto-ignition characteristic of each hydrocarbon component. As HCCI combustion can be described as a lean and slow gasoline knocking phenomenon, an analysis of HCCI combustion data gives us much more important knowledge of gasoline knocking phenomenon.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Stabilizations of High Temperature Heat Release CA50 and Combustion Period against Engine Load with the Dosage of Toluene in Fuel

2010-04-12
2010-01-0575
An HCCI combustion has a low temperature heat release (LTHR) and a high temperature heat release (HTHR). During the LTHR period, fuel chemicals break down into radicals and small hydrocarbons, and they assist an initial reaction of HTHR. This is an important role of LTHR. On the contrary, LTHR has a negative aspect. In general, a heating value of LTHR changes depending on HCCI engine load due to the difference of the injected fuel quantity. The heating value of LTHR is low under low load condition, and the heating value of LTHR is high under high load condition. This leads to the changes of the starting crank angle of HTHR against engine load and it is a nuisance problem for the control of HCCI engine operation. Therefore, a fuel which exhibits the constant LTHR phasing against engine load would be preferable.
Technical Paper

Homogeneous Charge Combustion and Emissions of Ethanol Ignited by Pilot Diesel on Diesel Engines

2004-03-08
2004-01-0094
Homogeneous charge combustion and emissions of ethanol ignited by pilot diesel fuel were investigated on a two-cylinder diesel engine. The results show that emissions depend on loads and ethanol volume fraction. At low loads, ethanol has little effects on smoke. With the increase of ethanol, NOx decreases, but CO emissions increase. At high loads, smoke emissions reduce greatly with increasing ethanol, but NOx and total hydrocarbon (THC) emissions increase. With the increase of ethanol, ignition delays, combustion duration shortens. The maximum rates of heat release for the fuel containing 10 vol% ethanol (E10) and 30 vol% ethanol (E30) increase. Brake specific energy consumption (BSEC) of E10 and E30 is improved slightly only at full loads. Compared to smoke emissions obtained on the same engine using ethanol blended diesel fuels, the tendency of smoke reduction is similar to that of homogeneous charge combustion of ethanol at the same operating conditions.
Technical Paper

The Effect of Fuel Properties on Low and High Temperature Heat Release and Resulting Performance of an HCCI Engine

2004-03-08
2004-01-0553
A supercharged 4-cylinder engine was introduced to evaluate how fuel properties affect engine combustion and performance in homogeneous charge compression ignition (HCCI) operation. In this study, choosing from 12 hydrocarbon constituents, model fuels were mixed to have the same distillation but different octane numbers (RON=70, 80, 92). For each fuel, RON distribution against distillation is same to keep the same octane number in cylinder vapor during the air-fuel compression process. To confirm the appropriateness of model fuels and test procedures, regular gasoline (RON=90) was also included. From the combustion analysis it was clear that the low temperature heat release depends on fuel characteristics. RON92 fuel has a small low temperature heat release, and a high temperature heat release combusts slowly.
Technical Paper

Numerical Simulation of HCCI Engine With Multi-Stage Gasoline Direct Injection Using 3D-CFD With Detailed Chemistry

2004-03-08
2004-01-0563
In this paper, the detailed chemical kinetics was implemented into the three-dimensional CFD code to study the combustion process in HCCI engines. An extended hydrocarbon oxidation reaction mechanism (89 species, 413 reactions) used for high octane fuel was constructed and then used to simulate the chemical process of the ignition, combustion and pollutant formation in HCCI conditions. The three-dimensional CFD / chemistry model (FIRE/CHEMKIN) was validated using the experimental data from a Rapid Compression Machine. The simulation results show good agreements with experiments. Finally, the improved multi-dimensional CFD code has been employed to simulate the intake, spray, combustion and pollution formation process of the gasoline direct injection HCCI engine with multi-stage injection strategy. The models account for intake flow structure, spray atomization, spray/wall interaction, droplet evaporation and gas phase chemistry in complex multi-dimensional geometries.
Technical Paper

PIV Measurement and Numerical Simulation of Flows in Automotive Catalytic Converters

2001-09-24
2001-01-3494
In this paper a Particle Image Velocimetry (PIV) was used to measure flow velocity fields in different inlet cones under different mass flux conditions on a steady state flow rig. Meanwhile, a mathematical model of the flow in catalytic converters was established and simulated using CFD code. Validation of the model shows that simulation results have a good agreement with experiments, which means that the established model is feasible and can be applied to predict the flow characteristics in catalytic converters with different inlet cone configurations. Experimental and computational results indicate that the inlet cone configuration significantly affects flow distribution. For a conventional inlet cone, the cone angle is one of the key factors to affect flow characteristics and should be kept as small as possible in a design. An enhanced inlet cone can greatly improve flow uniformity in catalytic converters.
Technical Paper

Expansion of HCCI Operating Region by the Combination of Direct Fuel Injection, Negative Valve Overlap and Internal Fuel Reformation

2003-03-03
2003-01-0749
A gasoline-fueled homogeneous charge compression ignition (HCCI) engine with both direct fuel injection and negative valve overlap for exhaust gas retention was examined. The fuel was injected directly into the residual in-cylinder gas during the negative valve overlap interval for the purpose of reforming it by using the high temperature resulting from exhaust gas recompression. With this injection strategy, the HCCI combustion region was expanded dramatically without any increase in NOx emissions which were seen in the case of compression stroke injection. Injection timing during the negative valve overlap was found to be an important parameter that affects the HCCI region width. The injection timing also had the most suitable value in each engine load for the best fuel consumption. From this result, A new injection strategy in which only a portion of the fuel was injected during the negative valve overlap interval, while the rest of fuel was injected in intake stroke, was proposed.
Technical Paper

Combustion and Emission Characteristics of WDF in a Light-Duty Diesel Engine over Wide Load Range

2017-10-08
2017-01-2265
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from initial boiling point of gasoline to final boiling point of diesel. Recent experimental results have shown WDF by blending 50% gasoline and 50% diesel (G50) exhibits much lower soot emissions than diesel at medium load with similar thermal efficiency. However, the engine performances fueled by G50 at both low load end and high load end are still unknown. In this study, the combustion and emission characteristics of G50 and diesel are compared over a wide load range from 0.2 MPa IMEP to 1.4 MPa IMEP at a light-duty diesel engine. The results shown that at 0.2 MPa IMEP, G50 exhibits low combustion stability and thermal efficiency. With the increase of load, the poor combustion quality of G50 is improved. G50 can achieve soot-free combustion up to 1.0 MPa IMEP, while diesel cannot.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

PLII-LEM and OH* Chemiluminescence Study on Soot Formation in Spray Combustion of PODEn-Diesel Blend Fuels in a Constant Volume Vessel

2017-10-08
2017-01-2329
Polyoxymethylene dimethyl ethers (PODEn) are promising alternative fuel candidates for diesel engines because they present advantages in soot reduction. This study uses a PODEn mixture (contains PODE3-6) from mass production to provide oxygen component in blend fuels. The spray combustion of PODEn-diesel bend fuels in a constant volume vessel was studied using high speed imaging, PLII-LEM and OH* chemiluminescence. Fuels of several blend ratios are compared with pure diesel. Flame luminance data show a near linear decrease tendency with the blend ratio increasing. The OH* images reveal that the ignition positions of all the cases have small differences, which indicates that using a low PODEn blend ratio of no more than 30% does not need significant adjustment in engine combustion control strategies. It is found that 30% PODEn blended with diesel (P30) can effectively reduce the total soot by approximately 68% in comparison with pure diesel.
Technical Paper

Effects of Aromatic and Olefin on the Formations of PAHs in GDI Engine

2017-10-08
2017-01-2390
In this paper, the impacts of Aromatic and Olefin on the formation of poly-aromatic hydrocarbons (PAHs) in the gasoline direct injection (GDI) engine were experimentally and numerically investigated. The objective of this study is to describe the formation process of the soot precursors including one ring to four ring aromatics (A1-A4). In order to better understand the effects of the fuel properties on the formations of PAHs. Three types of fuels, namely base gasoline, gasoline with higher aromatics content, and gasoline with higher olefin content were experimentally studied. At the same time, these aspects were also numerically investigated in the CHEMKIN code by using premixed laminar flame model and surrogated fuels. The results show that higher aromatics content in gasoline will lead to much higher PAHs formation. Similar trend was also found in the gasoline with higher olefin content.
Technical Paper

Combustion and Emission Characteristics of a PPCI Engine Fuelled with Dieseline

2012-04-16
2012-01-1138
In this paper blends of diesel and gasoline (dieseline) fuelled Partially Premixed Compression Ignition (PPCI) combustion and the comparison to conventional diesel combustion is investigated. The tests are carried out using a light duty four cylinder Euro IV diesel engine. The engine condition is maintained at 1800 rpm, 52 Nm (equivalent IMEP around 4.3 bar). Different injection timings and different amounts of EGR are used to achieve the PPCI combustion. The results show that compared to the conventional diesel combustion, the smoke and NOx emissions can be reduced by more than 95% simultaneously with dieseline fuelled PPCI combustion. The particle number total concentration can be reduced by 90% as well as the mean diameter (from 54 nm for conventional diesel to 16 nm for G50 fuelled PPCI). The penalty is a slightly increased noise level and lower indicated efficiency, which is decreased from 40% to 38.5%.
X