Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Journal Article

Genesis of the Third-Body at the Pad-Disc Interface: Case Study Of Sintered Metal Matrix Composite Lining Material

2009-10-11
2009-01-3053
During braking, third-body flows and layers govern friction mechanisms, which are fully responsible of the friction coefficient and wear. In the context of development of brake friction pairs, the involved tribological circuit has to be well understood and mastered. This paper concerns a sintered metal matrix composite used for TGV very high speed train. A series of low-energy stop brakings allows a detailed study of the third-body formation at the pad-disc contact. The pin surface is observed after each test. The evolution of the rubbing-area expansion all along the series is explained, and the friction behaviour, typical of the studied friction material, is related to the formation of a well-established third body at the pad-disc interface.
Journal Article

Application of Extension Evaluation Method in Development of Novel Eco-friendly Brake Materials

2009-10-11
2009-01-3019
Extenics is a new cross discipline to study rules and methods of solving contradictory problems in the real world. The basic concepts and theoretical frame of extenics are briefly introduced in this paper. Based on the merit of extenics, the extension evaluation method was applied to evaluate the brake materials according to a five-grade criterion established in this study. Considering the results computed by the original and simplified models, the similar conclusions were made: all four brake samples, marked A - D, were evaluated in the first grade based on the calculated dependence degrees, and sample B was judged as the best performing friction material with the highest dependence degree and the lowest wear rate.
Journal Article

Tool Wear Compensation

2009-11-10
2009-01-3216
This paper describes the principles of a new method to compensate for tool wear when drilling in complex materials such as Carbon Fibre Reinforced Plastics (CFRP), Carbon Fibre Reinforced Plastics / Titanium (CFRP/Ti) and Carbon Fibre Reinforced Plastics / Alloy (CFRP/AI) stacks. A reliable and repeatable hole quality is essential, especially in automatic drilling applications with robots or gantries. The method combines the unique feature to dynamically adjust the drilling diameter in very small steps in an Orbital drilling End-effector and a new type of software algorithm to predict and compensate for the tool wear in different materials. With this method a large number of holes can be drilled without changing the cutting tool, and a Cpk value of more than 2,5 can be achieved.
Journal Article

Time and Cost Reduction in Evaluation Processes for New Parameters in Manufacturing Processes

2009-11-10
2009-01-3197
Once qualified, manufacturing processes for safety critical components in aero engines are “frozen”, that is no changes are permitted to be made without a time consuming and costly re-validation. Moreover, the material selection for components in modern aero engines, due to high mechanical and thermal loads in operation, is limited to a small range of super alloys. These difficult to machine titanium and nickel based alloys are on the one hand a significant expense factor themselves, and cause considerable costs due to high tool wear on the other hand. Thus, it is intended to carry out time and resource saving experiments and - ideally - being able to transfer available results to similar processes. Using smart experimental design deploying relationships of physical measures involved, the effort of testing can be reduced. This paper explains the method's mathematical background, how the selection of the regarded parameters is carried out as well as the reduction of system inputs.
Journal Article

Estimation of deviations in NO and soot emissions between steady-state and EUDC transient operation of a common-rail diesel engine

2009-09-13
2009-24-0147
The study measured Mass Air Flow, (MAF), Manifold Absolute Pressure, (MAP), and emissions of NO and soot during fourteen transients of speed and load, representative of the Extra Urban Drive Cycle (EUDC). The tests were conducted on a typical passenger car/light-duty truck powertrain (a turbocharged common-rail diesel engine, of in-line 4-cylinder configuration). The objective was to compare NO and soot with corresponding steady-state emission results and propose an engine measurement methodology that will potentially quantify deviation (i.e. deterioration with respect to steady state optimum) in emissions of NO and soot during transients. Comparison between steady state, quasi-steady-states (defined later in the paper) and transients indicated that discrete quasi-steady-state engine operation, can be used for accurate prediction of transient emissions of NO and soot.
Journal Article

Laundry Study for a Lunar Outpost

2009-07-12
2009-01-2515
In support of the Constellation Program, NASA conducted an analysis of crew clothing and laundry options. Disposable clothing is currently used in human space missions. However, the new mission duration, goals, launch penalties and habitat environments may lead to a different conclusion. Mass and volume for disposable clothing are major penalties in long-duration human missions. Equivalent System Mass (ESM) of crew clothing and hygiene towels was estimated at about 11% of total life support system ESM for a 4-crew, 10-year Lunar Outpost mission. Ways to lessen this penalty include: reduce clothing supply mass through using clothes made of advanced fabrics, reduce daily usage rate by extending wear duration and employing a laundry with reusable clothing. Lunar habitat atmosphere pressure and therefore oxygen volume percentage will be different from Space Station or Shuttle. Thus flammability of clothing must be revisited.
Journal Article

Residual Stress Analysis of Punched Holes in 6013 Aluminum Alloy Commercial Vehicle Side Rails

2010-10-05
2010-01-1909
Compliance with tighter emission regulations has increased the proportion of parasitic weight in commercial vehicles. In turn, the amount of payload must be reduced to comply with transportation weight requirements. A re-design of commercial vehicle components is necessary to decrease the vehicle weight and improve payload capacity. Side rails have traditionally been manufactured from high strength steels, but significant weight reductions can be achieved by substituting steel side rails with 6013 high strength aluminum alloy side rails. Material and stress analyses are presented in this paper in order to understand the effect of manufacturing process on the material's mechanical behavior. Metallographic and tensile test experiments for the 6013-T4 alloy were performed in preparation for residual stress measurements of a punching operation. Punched holes are critical to the function of the side rail and can lead to high stress levels and cracking.
Journal Article

Effect of Drying Methods on the Physical and Structural Changes in Oil-Seed Flax Fiber

2010-10-05
2010-01-2024
With the growing environmental concerns, biodegradable materials are gaining more importance. Biocomposites which are made from a combination of biological fiber such as flax and hemp together with plastics are finding a good number of applications in day to day life. Flax has good physical and mechanical properties that can be utilized in areas like construction, biomedical & bioproducts and electronics applications. The quality of fiber depends upon various unit operations used in the processing. Drying is one of the most important unit operations which significantly affect the quality of the fiber. The method of drying for removal of moisture from the fiber significantly affects the drying time and quality. In the present study the raw flax fiber was subjected to drying before and after chemical treatment. The physical properties such as; tensile strength, color and structural changes were measured for raw and chemically treated flax fibers.
Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles

2010-10-25
2010-01-2176
The US Army is currently assessing the feasibility and defining the requirements of a Single Common Powertrain Lubricant (SCPL). This new lubricant would consist of an all-season (arctic to desert), fuel-efficient, multifunctional powertrain fluid with extended drain capabilities. As a developmental starting point, diesel engine testing has been conducted using the current MIL-PRF-46167D arctic engine oil at high temperature conditions representative of desert operation. Testing has been completed using three high density military engines: the General Engine Products 6.5L(T) engine, the Caterpillar C7, and the Detroit Diesel Series 60. Tests were conducted following two standard military testing cycles; the 210 hr Tactical Wheeled Vehicle Cycle, and the 400 hr NATO Hardware Endurance Cycle. Modifications were made to both testing procedures to more closely replicate the operation of the engine in desert-like conditions.
Journal Article

Proof-of-Principle Investigation into the Use of Custom Rapid Aging Procedures to Evaluate and Demonstrate Catalyst Durability

2010-10-25
2010-01-2269
The application of accelerated catalyst aging procedures on an engine dynamometer test bed for the purpose of demonstrating catalyst durability is examined. A proof-of-principle approach is followed using catalysts from vehicles certified to U.S. Tier 2 Bin 4 and California SULEV 2 levels. Accelerated durability demonstration methods based upon conventional fuel cut cycles were employed to age catalysts to levels predicted by quantification of thermal catalyst bed severity on the Standard Road Cycle (SRC) relative to the fuel cut aging cycle using the Bench Aging Time (BAT) equation. Emissions deterioration on the accelerated aging cycle is compared to the automobile manufacturers' certification values and to whole vehicle emissions performance results from several different in-use vehicle fleets. The influence of technology on whole vehicle emissions levels and deterioration characteristics is also evaluated.
Journal Article

Scuffing Resistance of Surface Treated 8625 Alloy Steels

2011-04-12
2011-01-0034
Scuffing is a common source of failure for many mechanical components in automobiles. 8625 alloy steel is commonly used in camshafts, gears, piston pins, shafts, and splines. The purpose of the research is to study the scuffing resistance of non-treated, carburized, nitrocarburized, and carbonitrided 8625 alloy steels. The scuffing resistance of the 8625 alloy steels was determined through pin-on-disk tests. The hardness and microstructure of the disks were analyzed using electron microscopy to determine wear mechanisms for each surface treated steel. The wear mechanisms were then related to the scuff resistance of the various materials.
Journal Article

Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling

2011-04-12
2011-01-0101
The Michelin Tweel tire structure has recently been developed as an innovative non-pneumatic tire which has potential for improved handling, grip, comfort, low energy loss when impacting obstacles and reduced rolling resistance when compared to a traditional pneumatic tire. One of the potential sources of vibration during rolling of a non-pneumatic tire is the buckling phenomenon and snapping back of the spokes in tension when they enter and exit the contact zone. Another source of noise was hypothesized due to a flower petal ring vibration effect due to discrete spoke interaction with the ring and contact with the ground during rolling as the spokes cycle between tension and compression. Transmission of vibration between the ground force, ring and spokes to the hub was also considered to be a significant contributor to vibration and noise characteristics of the Tweel.
Journal Article

Wear Protection of Al383/SiO2 Metal Matrix Composites by Plasma Electrolytic Oxidation (PEO) Process

2010-04-12
2010-01-0024
Al383/SiO₂ metal matrix composites (MMC) were designed to increase the wear properties of the Al alloy. However, the soft Al matrix was subject to large plastic deformation under high normal load during lubricated sliding wear tests, causing detachment of the reinforced particles. To further increase the wear resistance of the MMC, in this research, Plasma Electrolytic Oxidation (PEO) process was used to form oxide coatings on the MMC. The hard and wear-resistant oxide coatings protected the metal matrix during the wear tests, reducing the wear rate of MMC. The effect of both oxide coating thickness and volume content of SiO₂ particles on the wear behavior of MMC was investigated. It was found that with a proper combination of the volume content of SiO₂ and coating thickness, the MMC exhibited high wear resistance and low friction coefficient.
Journal Article

Optimized Design Solutions for Roof Strength Using Advanced High Strength Steels

2010-04-12
2010-01-0214
In August 2005, National Highway Traffic Safety Administration (NHTSA) proposed to increase the roof strength requirement under Federal Motor Vehicle Safety Standard (FMVSS) 216 from 1.5 to 2.5 times unloaded vehicle weight (UVW). To meet the new requirement with a minimum impact on vehicle weight and cost, the automotive community is working actively to develop improved roof architectures using advanced high strength steels (AHSS) and other lightweight materials such as structural foam. The objective of this study is to develop an optimized steel-only solution with low material and part-manufacturing costs. Since the new regulation will present a particular challenge to the roof architectures of large vans, pickup trucks and SUVs due to their large mass and size, a validated roof crush model on a B-Pillar-less light truck is utilized in this study.
Journal Article

Locally Austempered Ductile Iron (LADI)

2010-04-12
2010-01-0652
There are numerous component applications that would benefit from localized austempering (heat treating only a portion of the component) for either improved wear properties or fatigue strength. Currently available methods for “surface austempering” of ductile iron are often expensive and not as well controlled as would be desired. This study was undertaken to find a better process. Locally Austempered Ductile Iron (LADI) is the result of those efforts. LADI is a surface hardening heat treatment process that will produce a localized case depth of an ausferrite microstructure (ADI) in a desired area of a component. This process has been jointly developed by Ajax Tocco Magnethermic Corporation (ATM) and Applied Process, Inc.- Technologies Division (AP) with support and collaboration from ThyssenKrupp Waupaca, Inc. (TKW). This paper describes the outcome of using this patent pending process (US #65/195,131).
Journal Article

Ferrous High-Temperature Alloys for Exhaust Component Applications

2010-04-12
2010-01-0654
There is a wide spectrum of cast ferrous heat resistant alloys available for exhaust component applications such as exhaust manifolds and turbocharger housings. Generally speaking, the ferrous alloys can be divided into four groups including: ferritic cast irons, austenitic cast irons, ferritic stainless steels, and austenitic stainless steels. Selection of a suitable alloy usually depends on a number of material properties meeting the requirements of a specific application. Ferritic cast irons continue to be an important alloy for exhaust manifolds and turbocharger housings due to their relatively low cost. A better understanding of the alloying effects and graphite morphologies of ferritic cast irons are discussed and their effect on material behavior such as the brittleness at medium temperatures is provided. The nickel-alloyed austenitic cast irons, also known as Ni-resist, exhibit stable structure and improved high-temperature strength compared to the ferritic cast irons.
X