Refine Your Search

Topic

Author

Search Results

Standard

High Temperature Materials for Exhaust Manifolds

2017-12-20
CURRENT
J2515_201712
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

High Temperature Materials for Exhaust Manifolds

1999-08-01
HISTORICAL
J2515_199908
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

Definition and Measurement of Power Transfer Unit Speed-Dependent Parasitic Loss

2020-12-30
CURRENT
J3039_202012
This SAE Recommended Practice covers power transfer units (PTUs) used in passenger car and sport utility vehicles to support all wheel drive (AWD) operation. PTUs are typically full-time use geared devices (see 3.1). Some PTUs have additional features such as part-time on-demand capability via electronically actuated disconnect features, and other configurations are possible.
Standard

Validation of Compressibility Test Systems for Friction Materials

2021-01-13
CURRENT
J3079/1_202101
This SAE Recommended Practice (RP) applies to the validation process for test systems used to measure deflection (compressibility, creep, or swell and growth) of friction materials and friction material assemblies. The materials or assemblies can fit passenger cars, light trucks, and commercial vehicles equipped with hydraulic or air brake systems, using disc or drum brakes.
Standard

Low-preload Deflection Measurement for Brake Pads, Noise Shims, and Brake Pad Assemblies

2019-11-22
WIP
J3079/2

This SAE Standard specifies a method for measuring the deflection of friction materials, noise insulators, and disc brake pad assemblies to be used in road vehicles with a Gross Vehicle Weight Rating below 4336 kg.

This part of the SAE J3079 includes the test for deflection and creep at various pressures under ambient temperature conditions.

This SAE test method differs from SAE J2468 and ISO 6310 in the preload and maximum load applied to the test sample when deflection is measured. It also introduces additional measurements such as for deflection offset, hysteresis, and creep.

Standard

Low-preload Deflection Measurement for Brake Pads, Noise Shims, and Brake Pad Assemblies

2016-07-14
CURRENT
J3079/2_201607
This SAE Standard specifies a method for measuring the deflection of friction materials, noise insulators, and disc brake pad assemblies to be used in road vehicles with a Gross Vehicle Weight Rating below 4336 kg. This part of the SAE J3079 includes the test for deflection and creep at various pressures under ambient temperature conditions. This SAE test method differs from SAE J2468 and ISO 6310 in the preload and maximum load applied to the test sample when deflection is measured. It also introduces additional measurements such as for deflection offset, hysteresis, and creep.
Standard

Recommended Practice for Improving Measurement Quality of Particle Number Counting Devices

2020-08-20
CURRENT
J3160_202008
The scope of this document focuses on the setup and use of solid particle number (SPN) counting devices in both engine development and certification environments. The document reviews best practices for collecting and measuring samples from both raw and diluted exhaust gas streams across several sample probe insertion locations relative to installed aftertreatment devices. Appropriate dilution techniques, sample transfer processes, and temperature management techniques are included. Finally, performance and validation checks are covered to ensure that long-term degradation and instrument failures can be identified quickly. The particle size range targeted in this document is >23 nm, which aligns with the present EU SPN regulations and targets only solid particles. Current commonly available measurement devices are designed for counting efficiencies of 50% at 23 nm and 90% counting efficiencies at 40 nm so the contents of this document primarily address these particle sizes.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Valve Guide Information Report

2017-12-20
CURRENT
J1682_201712
This SAE Information Report provides: a Types of valve guides and their nomenclature b Valve guide alloy designations and their chemistries c Valve guide alloy metallurgy d Typical mechanical and physical properties of guide alloys e Typical dimensional tolerances of valve guides and their counterbores f Recommended interference fits g Installation procedures h Application considerations
Standard

VALVE GUIDE INFORMATION REPORT

1993-09-10
HISTORICAL
J1682_199309
This SAE Information Report provides: a Types of valve guides and their nomenclature b Valve guide alloy designations and their chemistries c Valve guide alloy metallurgy d Typical mechanical and physical properties of guide alloys e Typical dimensional tolerances of valve guides and their counterbores f Recommended interference fits g Installation procedures h Application considerations
Standard

Measurement and Characterization of Electronically Controlled Driveline Clutch Systems

2021-04-09
CURRENT
J3011_202104
This SAE Recommended Practice covers the most common applications of electronically controlled on-demand clutch systems used in passenger (car and light truck) vehicle applications. This practice is applicable for torque modulation devices used in transfer cases, electronic limited slip differential (eLSD) cross-axle devices, rear drive module (RDM) integrated torque transfer devices with or without disconnect capability, and other related torque transfer devices.
Standard

Laboratory Testing of Light-Duty Vehicle Electric Cooling Fan Assemblies for Airflow Performance

2019-02-13
CURRENT
J2867_201902
This SAE recommended practice is intended for use in testing and evaluating the performance of light-duty automotive electric engine cooling fan assemblies. These Electric Cooling Fan (ECF) assemblies are purchased by light-duty truck and passenger car OEMs from suppliers. They are purchased as complete assemblies, consisting mainly of the fan(s), motor(s), and shroud (see Figure 1); this Recommended Practice will only consider such complete assemblies. Some purchased assemblies using brush-type motors may also include digital control devices such as power resistors or pulse width modulation (PWM) electronics or local interconnect network (LIN) for speed control. In the case of brushless motor technology, the controller is an integral part of the motor where it also performs the commutation process electronically. The performance measurement would include fan output in terms of airflow and pressure, and fan input electric power in terms of voltage and current.
Standard

FUEL ECONOMY MEASUREMENT TEST (ENGINEERING TYPE) FOR TRUCKS AND BUSES

1982-07-01
HISTORICAL
J1376_198207
This procedure incorporates test cycles that produce relative fuel economy data relating to long haul, short haul, and. local driving patterns, or any combination of these and to those components developed to improve fuel economy for these patterns. The tests conducted on a specific vehicle are to reflect that vehicle’s general mode of operation. The procedure is intended to be used under controlled, warmed-up conditions on a test tract or on suitable roads. A minimum of two vehicles running simultaneously is required. Test condition recommendations are provided for undertaking this engineering test. If it is necessary to conduct a test outside of these test conditions, the purpose of the test and the variant conditions should be recorded and noted whenever the results are reported.
Standard

Rolling Resistance Measurement Procedure for Highway Truck and Bus Tires

2020-11-12
CURRENT
J1379_202011
This recommended practice applies to the laboratory measurement of the rolling resistance of pneumatic tires designed primarily for use on trucks and buses in normal highway service, as defined by the Tire and Rim Association, Inc. (TRA); it does not include light truck tires (designated LT). The procedure applies only to straight, free-rolling tires under steady-state operation and includes the following three basic methods:
Standard

ROLLING RESISTANCE MEASUREMENT PROCEDURE FOR HIGHWAY TRUCK AND BUS TIRES

1983-08-01
HISTORICAL
J1379_198308
This recommended practice applies to the laboratory measurement of the rolling resistance of pneumatic tires designed primarily for use on trucks and buses in normal highway service, as defined by the Tire and Rim Association. Inc. (TRA): it does not include light truck tires (designated LT). The procedure applies only to straight, free-rolling tires under steady-state operation and includes the following three basic methods:
Standard

Deflection Measurement for Friction Materials Using Segment Applicator

2022-06-13
CURRENT
J3231_202206
This SAE Recommend Practice specifies a method for measuring the deflection of friction materials and disc brake pad assemblies in a manner more consistent with classical material compressive strain testing. This SAE test method differs from SAE J2468 in the preload and maximum load applied to the test sample when deflection is measured. It adopts the material applied stress levels found in ISO 6310 (0.5 to 8.0 MPa) using a 25 mm diameter flat plunger.
X