Refine Your Search

Topic

Search Results

Standard

EMISSION TEST DRIVING SCHEDULES

1991-06-01
HISTORICAL
J1506_199106
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this document will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This document includes: a. Descriptions of driving schedules; and b. Second-by second definition of speed versus time sequences.
Standard

EMISSION TEST DRIVING SCHEDULES

1988-06-01
HISTORICAL
J1506_198806
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this information report will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This information report includes: 1 - Descriptions of driving schedules. 2 - Second-by second definition of speed versus time sequences.
Standard

CRANKCASE EMISSION CONTROL TEST CODE

1985-08-01
HISTORICAL
J900_198508
The purpose of this code is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: 1 The flow rate of the blowby of an engine. 2 The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 1 Definitions and Terminology 2 Test Equipment 3 Test Procedures 4 Information and Data to be Recorded 5 Data Analysis 6 Presentation of Information and Data
Standard

CRANKCASE EMISSION CONTROL TEST CODE

1964-06-01
HISTORICAL
J900_196406
The purpose of this code is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: 1 The flow rate of the blowby of an engine. 2 The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 1. Definitions and Terminology 2. Test Equipment 3. Test Procedures 4. Information and Data to be Recorded 5. Data Analysis 6. Presentation of Information and Data
Standard

CRANKCASE EMISSION CONTROL TEST CODE

1995-03-02
HISTORICAL
J900_199503
The purpose of this SAE Standard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a The flow rate of the blowby of an engine b The flow rates through the crankcase emission control system inlet and outlet This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology 4. Test Equipment 5. Test Procedures 6. Information and Data to be Recorded 7. Data Analysis 8. Presentation of Information and Data
Standard

CRANKCASE EMISSION CONTROL TEST CODE

1980-11-01
HISTORICAL
J900_198011
The purpose of this code is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: 1 The flow rate of the blowby of an engine. 2 The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 1. Definitions and Terminology 2. Test Equipment 3. Test Procedures 4. Information and Data to be Recorded 5. Data Analysis 6. Presentation of Information and Data
Standard

STANDARD CLASSIFICATION SYSTEM FOR NONMETALLIC AUTOMOTIVE GASKET MATERIALS

1990-06-01
HISTORICAL
J90_199006
The classification system provides a means for specifying or describing pertinent properties of commercial nonmetallic gasket materials. Materials composed of asbestos, cork cellulose, and other organic or inorganic materials in combination with various binders or impregnants are included. Materials normally classified as rubber compounds are not included, since they are covered in SAE J200 - ASTM D 2000. Gasket coatings are not covered, since details thereof are intended to be given on engineering drawings or in separate specifications.
Standard

NONMETALLIC GASKETS FOR GENERAL AUTOMOTIVE PURPOSES

1963-04-01
HISTORICAL
J90A_196304
These specifications for SAE J90 are intended to define the basic properties of commercial nonmetallic gasketing materials commonly used in automotive applications. These include materials composed of asbestos or other inorganic fibers, cork, or cellulose or other organic fibers, in combination with various binders or impregnants. Rubber compounds without fibrous or cork reinforcement are not included since they are covered in SAE Standard, Specifications for Elastomer Compounds for Automotive Applications—SAE J14, and in ASTM D 735-61T. Although the test methods and values are designed to describe the basic properties of the material in each category, they do not define all of, the properties which govern gasket performance. Caution should, therefore, be exercised in using these specifications as a basis for the selection of materials.
Standard

STANDARD CLASSIFICATION SYSTEM FOR NONMETALLIC AUTOMOTIVE GASKET MATERIALS

1995-03-25
HISTORICAL
J90_199503
The classification system provides a means for specifying or describing pertinent properties of commercial nonmetallic gasket materials. Materials composed of asbestos, cork, cellulose, and other organic or inorganic materials in combination with various binders or impregnants are included. Materials normally classified as rubber compounds are not included, since they are covered in SAE J200—ASTM D 2000. Gasket coatings are not covered, since details thereof are intended to be given on engineering drawings or in separate specifications.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2020-10-06
CURRENT
J335_202010
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Measurement of Intake Air or Exhaust Gas Flow of Diesel Engines

2011-06-13
CURRENT
J244_201106
This procedure establishes recommendations on the measurement of diesel engine intake air flow under steady-state test conditions. The measurement methods discussed have been limited to metering systems and associated equipment found in common usage in the industry, specifically, nozzles, laminar flow devices, and vortex shedding. The procedure establishes accuracy goals as well as explains proper usage of equipment. The recommendations concerning diesel engine exhaust mass flow measurements are minimal in scope.
Standard

INSTRUMENTATION AND TECHNIQUES FOR EXHAUST GAS EMISSIONS MEASUREMENT

1993-09-09
HISTORICAL
J254_199309
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). A complete procedure for testing vehicles may be found in SAE J1094. This document includes the following sections: 1 Scope 2 References 3 Emissions Sampling Systems 4 Emissions Analyzers 5 Data Analysis 6 Associated Test Equipment 7 Test Procedures
Standard

DIESEL SMOKE MEASUREMENT PROCEDURE

1988-09-01
HISTORICAL
J35_198809
The recommended practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading and calculation for evaluation of an engine’s transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine’s transient smoke characteristics.
Standard

Manual Transmission and Transaxle Efficiency and Parasitic Loss Measurement

2011-09-02
CURRENT
J2453_201109
Because of the intense focus on CAFE and fuel emission standards, optimization of the automobile drivetrain is imperative. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies the dynamometer test procedure which maps a manual transmission’s efficiency. The document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine “in-gear” transmission efficiency. The second procedure measures parasitic losses experienced while in neutral at nominal idling speeds and also churning losses while in gear. The application of this document is intended for passenger car and light truck. All references to transmissions throughout this document include transaxles.
Standard

Radial Lip Seal Torque—Measurement Method and Results

2000-10-02
HISTORICAL
J1971_200010
This SAE Recommended Practice provides information on procedures, tools, and fixtures useful in determining frictional torque measurement of radial lip oil seals. Information on the effect of various operational environments on oil seals are discussed and a means of calculation of power consumption of seals is provided.
Standard

FLYWHEELS FOR TWO-PLATE SPRING-LOADED CLUTCHES

1993-12-01
HISTORICAL
J619_199312
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for dry spring-loaded clutches. Clutches to fit flywheels with configurations per this document may not be commercially available. Availability should be ascertained prior to flywheel design Figure 1 and Table 1A.
Standard

AUTOMATIC TRANSMISSION HYDRAULIC CONTROL SYSTEMS - TERMINOLOGY

1988-07-01
HISTORICAL
J648_198807
The following is a list of the most common terminology used in describing hydraulic control systems. The hydraulic control system of an automatic transmission may include oil pumps, pressure regulator, governor, and control valves.
Standard

Automatic Transmission Hydraulic Control Systems—Terminology

2000-11-02
HISTORICAL
J648_200011
The following is a list of the most common terminology used in describing hydraulic control systems. The hydraulic control system of an automatic transmission may include oil pumps, pressure regulator, governor, and control valves.
Standard

Lip Force Measurement—Radial Lip Seals

2000-10-09
HISTORICAL
J1901_200010
This SAE Recommended Practice defines radial lip force for shaft seals. The principle of lip force measurement is described and the types of radial force measuring devices are discussed. A type of radial force measuring device and procedure for use is recommended.
X