Refine Your Search

Topic

Author

Search Results

Standard

J1349 Certified Power Engine Data for Ford Expedition / Lincoln Navigator - Level 2

2008-04-10
CURRENT
CPFD2_09EXPNAV
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

J1349 Certified Power Engine Data for GM LLT as used in 2010 Cadillac CTS Wagon - Level 2

2008-12-10
CURRENT
CPGM2_10CADWAG
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2013-11-18
HISTORICAL
AIR6241
This SAE Aerospace Information Report (AIR) describes procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode.
Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2020-07-28
CURRENT
AIR6241A
This Aerospace Information Report (AIR) is a historical technical record describing procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode. This Aerospace Information Report is a historical technical record of the initial document detailing the measurement of non-volatile particle emissions at the exit plane of aircraft gas turbine engines. This methodology was adopted by ICAO into Annex 16 Vol II and updated into Aerospace Recommended Practice ARP6320. Future updates of this document may include explanations of the reasoning and assumptions used to develop this measurement methodology.
Standard

J1349 Certified Power Engine Data for GM LE5 as used in 2007 Pontiac G6 Level 2

2006-07-31
CURRENT
CPGM2_LE5G6
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

J1349 Certified Power Engine Data for Ford as used in 2007 J50C / Mazda CX9 Level 2

2006-10-17
CURRENT
CPFD2_MZDCX9
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

CDIF Integrated Meta-model Data Flow Model Subject Area

2016-06-16
CURRENT
EIAIS115
The CDIF Family of Standards is primarily designed to be used as a description of a mechanism for transferring information between CASE tools. It facilitates a successful transfer when the authors of the importing and exporting tools have nothing in common except an agreement to conform to CDIF. The language that is defined for the Transfer Format also has applicability as a general language for Import/Export from repositories. The CDIF Integrated Meta-model defined for CASE also has applicability as the basis of standard definitions for use in repositories. The standards that form the complete family of CDIF Standards are documented in EIA/IS-106 CDIF - CASE Data Interchange Format - Overview. These standards cover the overall framework, the transfer format and the CDIF Integrated Meta-model. The diagram in Figure 1 depicts the various standards that comprise the CDIF Family of Standards. The shaded box depicts this Standard and its position in the CDIF Family of Standards.
Standard

CDIF - Integrated Meta-model Data Modeling Subject Area

2016-06-15
CURRENT
EIAIS114
The CDIF Family of Standards is primarily designed to be used as a description of a mechanism for transferring information between CASE tools. It facilitates a successful transfer when the authors of the importing and exporting tools have nothing in common except an agreement to conform to CDIF. The language that is defined for the Transfer Format also has applicability as a general language for Import/Export from repositories. The CDIF Integrated Meta-model defined for CASE also has applicability as the basis of standard definitions for use in repositories. The standards that form the complete family of CDIF Standards are documented in EIA/IS-106 CDIF - CASE Data Interchange Format - Overview. These standards cover the overall framework, the transfer format and the CDIF Integrated Meta-model. The diagram in Figure 1 depicts the various standards that comprise the CDIF Family of Standards. The shaded box depicts this Standard and its position in the CDIF Family of Standards.
Standard

AIRCRAFT ELECTRICAL POWER SYSTEMS. MODELING AND SIMULATION. VALIDATION AND VERIFICATION METHODS.

2017-02-08
WIP
AIR6387
The development of future more-and full-electric aircraft concepts has significantly impacted aircraft electric power system (EPS) design. Finalizing the EPS architectures involves extensive modeling and simulation activities to ensure the required characteristics of the entire EPS prior to the physical implementation. Hence, the development of accurate, effective and computational time-saving simulation models is of great importance. Correspondingly, there is a need to establish an EPS-specific modeling and simulations common framework to ensure effective and accurate solutions to the problems addressed. The document continues a series of AE-7M documents specific for aircraft electrical systems aiming to establish such a framework (the series has started with AIR 6326 "Aircraft Electrical Power Systems. Modeling and Simulation. Definitions" issued in August, 2015).
X