Refine Your Search

Topic

Search Results

Video

Development of an Electrically-driven Intelligent Brake Unit

2012-02-16
An electrically-driven, intelligent brake unit has been developed, to be combined with a regenerative braking system in electric vehicles (EVs) and hybrid electric vehicles (HEVs) which went into production in 2010 - 11. The brake pedal force is assisted by an electrically driven motor, without using vacuum pressure, unlike conventional braking systems. The actuator can be implemented to coordinate with a regenerative braking system, and to have adjustable pedal feel through use of a unique pressure-generating mechanism and a pedal-force compensator. In this paper, we describe features of the actuator mechanism and performance test results Presenter Yukio Ohtani, Hitachi Automotive Systems
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Video

Development and Build-up of a Hybrid Commercial Vehicle

2011-12-05
In 1991, Hino Motors, Ltd. (Hino) launched the world's first hybrid city buses in the market. Thereafter, Hino has improved its hybrid vehicle technology and applied it to various commercial vehicles including city buses, sightseeing buses, medium-duty trucks and light-duty trucks. Presenter Shigeru Suzuki , Hino Motors, Ltd Shigeru Suzuki , Hino Motors, Ltd
Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Video

The Development of New Hino Hybrid Commercial Vehicles

2011-12-05
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

The increased challenge of Commercial Vehicle Wiring

2011-12-05
Our trucks today contain anywhere from XX to XX computers on board, some of these computers have the capability to manage algorithms for the correct operation of up to XX systems. Presenter Jesus Gomez, Daimler Trucks North America LLC
Video

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

2011-12-05
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Video

Mainstream and Main Street Hybrids

2012-03-29
Several technological advancements have enabled hybrid technology to become a viable option in the commercial truck market. Although hybrid trucks are becoming more mainstream, they are not the right alternative fuel solution for every application. When matched with the right duty cycle, hybrid technology can provide a significant cost savings. Due to these advancements and anticipated benefits, hybrid commercial trucks are forecasted to become a significant part of the commercial truck market. Presenter Glenn Ellis, Hino Motors Sales USA Inc.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
Video

Characterization and Potential of Dual Fuel Combustion in a Modern Diesel Engine

2011-12-05
Diesel Dual Fuel, DDF, is a concept which promises the possibility to utilize CNG/biogas in a compression ignition engine maintaining a high compression ratio, made possible by the high knock resistance of methane, and the resulting benefits in thermal efficiency associated with Diesel combustion. Presenter Fredrik K�nigsson, AVL Sweden
Video

Transesterification of Waste Cooking Oil in Presence of Crushed Seashell as a Support for Solid Heterogeneous Catalyst

2011-12-05
Developing relatively cheap and widely available resources for heterogeneous solid catalyst synthesis is a promising approach for biodiesel fuel industry. Seashell which is essentially calcium carbonate can be used as a basic support for transesterification heterogeneous catalysts. In the present investigation, the alcoholysis of waste frying oil has been carried out using seashell-supported K3 PO4 as solid catalyst. Presenter Essam Oun Al-Zaini, PhD student, UNSW
Video

Blue Bird Propane Powered Vision School Bus

2012-04-10
Propane autogas, the world?s third most-used engine fuel, powers vehicles, transit buses, and now school buses. Blue Bird has recently launched the Next Generation Vision type C school bus, powered by a ROUSH CleanTech liquid propane autogas fuel system and a Ford 6.8L V10 engine. The bus reduces operating costs by up to 40%, greenhouse gas emissions by up to 24%, and maintains the factory horsepower, torque, and towing capacity ratings. Learn about how school districts are saving over $.30 / mile using this clean, domestically-produced fuel. Presenter Brian Carney, Roush CleanTech.
Video

New Solutions for One Shot Hand Held and Robot Drilling of CFRP/Titan and -/Aluminium Stack Drilling in H8 Quality for Aerospace Applications

2012-03-23
Up to now, the reliability achieved by COTS components was largely sufficient for avionics, in terms of failure rate as well as time to failure. With the implementation of new and more integrated technologies (90 nm node, 65 nm and below), the question has arisen of the impact of the new technologies on reliability. It has been stated that the lifetime of these new technologies might decrease. The drift is expected to be technology dependent: integration, technology node, materials, elementary structure choices and process pay a key role. Figures have been published, which gives smaller lifetime than the 30 years generally required for avionics. This would of course impact not only the reliability, but also the maintenance of COTS-based avionics. Hence a new policy should be defined for the whole COTS supply chain. Faced with these impending risks, different methodologies have been developed.
Video

Business Model for Successful Commercialization of Aircraft Designs

2012-03-21
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Video

Exploring the Manual Forming of Complex Geometry Composite Panels for Productivity and Quality Gains in Relation to Automated Forming Capabilities

2012-03-23
In a variety of industries there is a growing need to manufacture high quality carbon fibre epoxy matrix composite structures at greater production rates and lower costs than has historically been the case. This has developed into a desire for the automation of the manufacture of components, and in particular the lay-up phase, with Automated Tape Laying (ATL) and Fibre Placement (AFP) the most popular choices. When used for large primary structures there are such potential gains to be had that both techniques have seen rapid implementation into manufacturing environments. But significant concerns remain and these have limited their wider adoption into secondary structure manufacturing, where manual forming of woven broadgoods is dominant. As a result the manufacture of secondary structures is generally explored for costs reduction through drape simulation and lower cost materials.
X