Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Development of a Volatile Organics Concentrator for Use in Monitoring Space Station Water Quality

1991-07-01
911435
An approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment has been previously described (Reference 1). The Volatile Organics Concentrator (VOC) system was designed for attachment to a gas chromatograph/mass spectrometer (GC/MS) for analysis of the volatile organics in water on Space Station Freedom. The VOC concept utilizes a primary solid sorbent for collection and concentration of the the organics from water, with subsequent transfer using nitrogen gas through a permeation dryer tube to a secondary solid sorbent tube. The secondary solid sorbent is thermally desorbed to a gas chromatograph for separation of the volatiles which are detected using a mass spectrometer.
Technical Paper

A Volatile Organics Concentrator for Use in Monitoring Space Station Water Quality

1990-07-01
901352
The process used to identify, select and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is described. The Volatile Organics Concentrator (VOC) system described in this paper has been designed for attachment to a gas chromatograph/mass spectrometer (GC/MS) for analysis of volatile organics in water on Space Station. In this work, in order to rank the many identified approaches, the system was broken into three critical areas. These were gases, volatile separation from water and water removal/GC/MS interface. Five options involving different gases (or combinations) for potential use in the VOC and GC/MS system were identified and ranked. Nine options for separation of volatiles from the water phase were identified and ranked. Seven options for use in the water removal/GC column and MS interface were also identified and included in overall considerations.
Technical Paper

Air Quality Monitoring by Open Path Fourier Transform Infrared (FTIR) Spectrometry

1997-07-01
972391
The feasibility of using open path Fourier transform infrared (OP-FTIR) spectrometry as an ambient air sensor on spacecraft was examined. OP-FTIR is a valuable monitoring technique because the sensor requires no sample preparation or separations and compositional information obtained is along a path rather than at a sampling point. OP-FTIR monitors and quantitates in real-time, offers high sensitivity, and detection is compound-specific. The data analysis, data reduction, and hardware requirements were investigated and potential applicability of chemometric methods and state-of-the-art commercial hardware systems were discussed.
Technical Paper

The Development and Testing of a Volatile Organics Concentrator for Use in Monitoring Space Station Water Quality

1992-07-01
921266
An approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment has been previously described (Reference 1). The Volatile Organics Concentrator (VOC) system was designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for analysis of volatile organic compounds in water on Space Station Freedom. The VOC utilizes a primary solid sorbent for collection and concentration of the volatile compounds, transfer of the volatiles through a permeation dryer to a secondary solid sorbent, followed by thermal desorption of volatiles from the secondary sorbent onto a GC/MS system. Fabrications and preliminary testing of the VOC breadboard using a gas chromatography equipped with flame ionization detector has been previously described (Reference 2). These results have indicated that the VOC will meet or exceed the goals set for the program.
X