Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

CFD Numerical Simulation Aero-engine Air-Oil Separator

2022-03-08
2022-01-0027
Engine oil systems drive and de-aerate air-oil solutions in a two-phase flow to provide an appropriate amount of oil lubrication and cooling. especially in aero-engine and starter-generator component and system. The oil lubrication systems combine three important functions of the Main Oil Pump (MOP) for lubrication and scavenging: the de-aeration and de-oiling of the air-oil mixture generated in the bearing and gearbox sumps and pumping the oil towards the tank. These are critical functions for the aero-engine and starter-generator. An aero-engine lubrication system along with an integrated pump and separation of gas-liquid mixture has been developed and characterized experimentally to increase Collins Aerospace Engine and Control Systems research and development productivity. This system has also improved engine and starter-generator reliability and system performance.
Journal Article

Turbojet Engine Parameters Calculation Based on Fuel Flow and Exhaust Gas Temperature

2021-03-02
2021-01-0029
The aircraft jet engine is one of the most complex multivariable systems with multiple inputs and multiple outputs. To attempt to optimize control functions or to address diagnostic problems, a detailed knowledge of all jet engine design parameters and performances is required. Although jet engines have been around for almost a century, there are only a few companies in the world presently designing and manufacturing them; as such these companies possess detailed knowledge of all relevant design characteristics and performance parameters. In the event where jet engine technical details are unknown, or only a few of them are known from manufacturer’s catalogues, the challenge becomes how to calculate and extrapolate critical performance parameters based on only fuel flow, jet exhaust temperature and total thrust.
Technical Paper

Wireless Power Transfer in Aircraft Systems

2024-03-05
2024-01-1927
The aerospace industry is noticing significant shift towards More Electric Aircraft (MEA). The advancement of electrical technology the systems are being transformed towards electric compared to the conventional pneumatic or hydraulic systems. This has led to an increased demand in electrical power from 150 Kilo Watts in the conventional airplane to 1 Mega Watts in More Electric Aircraft. More electric systems, call for increased electrical wiring harness to connect various systems in the aircraft. These harnesses consist of power and data cables. Wireless communication technology is being matured for data communication, leading to reduction of wire harness for data. As of now, the length of wires in large commercial aircraft is over 100miles and it may not be surprising if the electrification of aircraft drive this too much longer.
Technical Paper

Carbon Nanotube (CNT) Based Electrothermal Ice Protection System Flight Tests

2023-06-15
2023-01-1398
Innovative carbon nanotube (CNT) electrothermal heating technology for ice protection systems is one of the alternatives under development that shall contribute to more efficient and sustainable aircraft. CNT heater technology allows for more rapid heat up rates over legacy metallic electrothermal heaters that utilize resistance wires or metallic foils. This more rapid heat up rate can lead to more energy efficient electrothermal ice protection system designs and is being studied to determine how much the rapid heat up properties of CNT can lead to a minimization of residual ice build-up aft of the heated area. Due to the inherent redundancy of CNT material used, leads to a very robust and damage tolerant heating element. To mature this technology to prepare to implement CNT on an in-service aircraft platform, a multi-staged flight testing effort to prove out the technology on an actual aircraft and in a relevant environment is mandatory.
Technical Paper

Enhancing Sustainable Aviation through Contrail Management – A Framework for Multiple Platforms

2024-06-01
2024-26-0444
Effective contrail management while ensuring operational and economic efficiencies for flight services is essential for providing services with minimal adverse environmental impact. The paper explores various aspects of contrail management applicable to different platforms such as Unmanned vehicles, Commercial airliners and Business & regional jets. The aspects unique to each platform such as flight levels of operation, fuel types, flight endurance and radius of operation have been analyzed. Expanse of 5G network is resulting in increased flight activity at flight levels not envisaged hitherto. The paper also dwells on the ramifications of the increased proliferation of different platforms at newer flight levels from the perspective of contrail management.
Technical Paper

Energy Consumption in Lightweight Electric Aircraft

2024-06-01
2024-26-0403
Electric aircraft have emerged as a promising solution for sustainable aviation, aiming to reduce greenhouse gas emissions and noise pollution. Efficiently estimating and optimizing energy consumption in these aircraft is crucial for enhancing their design, operation, and overall performance. This paper presents a novel framework for analyzing and modeling energy consumption patterns in lightweight electric aircraft. A mathematical model is developed, encompassing key factors such as aircraft weight, velocity, wing area, air density, coefficient of drag, and battery efficiency. This model estimates the total energy consumption during steady-level flight, considering the power requirements for propulsion, electrical systems, and auxiliary loads. The model serves as the foundation for analyzing energy consumption patterns and optimizing the performance of lightweight electric aircraft.
Technical Paper

Power Transfer Protocol for Variable Frequency Aircraft Electrical Power Systems

2024-03-05
2024-01-1915
Since the early days of aviation, when an AC-type generator became a primary source of electrical power for all aircraft systems, the demand for electrical power has steadily grown. Following rapid technology and scientific advancements in the aerospace industry, the complexity and criticality of all aircraft systems have increased to the point where multiple independent and isolated electrical power sources are required. In such an environment, with two or more variable-frequency AC-type generators that can be simultaneously activated to provide electrical power to the aircraft power distribution system, a safe power transfer process becomes a major priority. This means that any two independent aircraft AC power sources with different frequencies or phase angles cannot be connected simultaneously to a common power bus.
X