Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Incorporation of Atmospheric Neutron Single Event Effects Analysis into a System Safety Assessment

2011-10-18
2011-01-2497
Atmospheric Neutron Single Event Effects (SEE) are widely known to cause failures in all electronic hardware, and cause proportionately more failures in avionics equipment due to the use altitude. In digital systems it is easy to show how SEE can contribute several orders of magnitude more faults than random (hard) failures. Unfortunately, current avionics Safety assessment methods do not require consideration of faults from SEE. AVSI SEE Task Group (Aerospace Vehicle Systems Institute Committee #72, on Mitigating Radiation Effects in Avionics) is currently coordinating development of an atmospheric Neutron Single Event Effects (SEE) Analysis method. This analysis method is a work in progress, in close collaboration with SAE S-18 and WG-63 Committees (Airplane Safety Assessment Committee). The intent is to include this method as part of current revisions to ARP4761 (Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment).
Journal Article

Incorporating Atmospheric Radiation Effects Analysis into the System Design Process

2012-10-22
2012-01-2131
Natural atmospheric radiation effects have been recognized in recent years as key safety and reliability concerns for avionics systems. Atmospheric radiation may cause Single Event Effects (SEE) in electronics. The resulting Single Event Effects can cause various fault conditions, including hazardous misleading information and system effects in avionics equipment. As technology trends continue to achieve higher densities and lower voltages, semiconductor devices are becoming more susceptible to atmospheric radiation effects. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered. The purpose of this paper is to describe a process to incorporate the SEE analysis into the development like-cycle. Background on the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions is provided.
Technical Paper

Nitrogen Removal from a Urine-Soap Wastewater Using a Bioprocessor System: Process Monitoring and Control

2002-07-15
2002-01-2353
A detailed study was conducted on nitrification using a bench top bioprocessor system proposed for water recycling of a urine-soap wastewater expected to be generated by crewmembers on International Space Station (ISS) or similar long-term space missions. The bioprocessor system consisted of two packed bed biofilm reactors; one anoxic reactor used for denitrification and one aerobic reactor used for nitrification. lnfluent wastewater was a mixture of dilute NASA whole body soap (2,300 mg/L) and urea (500 mg/L as organic nitrogen). During two months of steady-state operation, average chemical oxygen demand (COD) removal was greater than 95%, and average total nitrogen removal was 70%. We observed that high levels of nitrite consistently accumulated in the aerobic (nitrifying) reactor effluent, indicating incomplete nitrification as the typical end product of the reaction would be nitrate.
Technical Paper

A New Design of Low Cost V-band Joint

2016-09-27
2016-01-2128
In this work we have proposed an interesting clamping solution of V-band which has an important industrial impact by reducing the cost and assembly process as well compare to the traditional V-band. The design what we are focusing for is applied for all size of turbochargers which helps to connect the hot components such as manifold and turbine housing. The cost for V-band is mainly from T-bolt. It is made from special stainless steel which represents 50% of the total cost. In this work it is proposed a new V-band joint by changing bolt clamping status from tension to compression. From tension to compression we change the bolt material from high cost steel to low cost steel. The new total cost is reduced by 40%. The prototype is made and performed in static tests including anti-rotating torque test and salt spray test. The new joint meets the design requirements at static condition. Further work will focus on the dynamic qualification and at high temperature as well.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
X