Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
Technical Paper

Nanoparticle-enhanced Heat Transfer Fluids for Spacecraft Thermal Control Systems

2006-07-17
2006-01-2264
The addition of metal nanoparticles to standard coolant fluids dramatically increases the thermal conductivity of the liquid. The properties of the prepared nanofluids will allow for lighter, smaller, and higher efficiency spacecraft thermal control systems to be developed. Nanofluids with spherical or rod-shaped metal nanoparticles were investigated. At a volume concentration of 0.5%, the room temperature thermal conductivity of a 2 nm spherical gold nanoparticle-water solution was increased by more than 10% over water alone. Silver nanorods increased the thermal conductivity of ethylene glycol by 53% and water by 26%.
Technical Paper

Development of Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation: Technology Leadership Brief

2012-10-08
2012-01-9008
In an earlier paper, the authors described how Model-Based System Engineering could be utilized to provide a virtual Hardware-in-the-Loop simulation capability, which creates a framework for the development of virtual ECU software by providing a platform upon which embedded control algorithms may be developed, tested, updated, and validated. The development of virtual ECU software is increasingly valuable in automotive control system engineering because vehicle systems are becoming more complex and tightly integrated, which requires that interactions between subsystems be evaluated during the design process. Variational analysis and robustness studies are also important and become more difficult to perform with real hardware as system complexity increases. The methodology described in this paper permits algorithm development to be performed prior to the availability of vehicle and control system hardware by providing what is essentially a virtual integration vehicle.
Technical Paper

Pressurized and Atmospheric Pressure Gasoline-Fueled Polymer Electrolyte Fuel Cell System Performance

1999-08-02
1999-01-2574
The operating pressure is one of the critical issues in designing a gasoline-fueled PEM fuel cell system for transportation applications. Pressurized (3atm) and atmospheric pressure (1atm) fuel cell systems are being considered by various developers for automotive applications. Systems analyses have been performed for the two systems using GCtool, a computer simulation code developed at Argonne National Laboratory. The two systems were designed for comparable overall system efficiencies at a rated design power of 50 kW. The characteristics and performance of the different components of the two systems were compared at the design power and at part-load operating conditions. Transient analyses were performed to investigate the dynamic response of the two systems during cold startup. The pros and cons of the two systems regarding their performance, size, and preliminary cost estimates are presented.
Technical Paper

Characterization of the Three Phase Catalytic Wet Oxidation Process in the International Space Station (ISS) Water Processor Assembly

2000-07-10
2000-01-2252
A three phase catalytic mathematical model was developed for analysis and optimization of the volatile reactor assembly (VRA) used on International Space Station (ISS) Water Processor. The Langmuir-Hinshelwood Hougen-Watson (L-H) expression was used to describe the surface reaction rate. Small column experiments were used to determine the L-H rate parameters. The test components used in the experiments were acetic acid, acetone, ethanol, 1-propanol, 2-propanol and propionic acid. These compounds are the most prevalent ones found in the influent to the VRA reactor. The VRA model was able to predict performance of small column data and experimental data from the VRA flight experiment.
Technical Paper

Energy Storage Requirements and Implementation for a Lunar Base Microgrid

2023-09-05
2023-01-1514
Future lunar missions will utilize a Lunar DC microgrid (LDCMG) to construct the infrastructure for distributing, storing, and utilizing electrical energy. The LDCMG’s energy management, of which energy storage systems (ESS) are crucial components, will be essential to the success of the missions. Standard system design currently employs a rule-of-thumb approach in which design methodologies rely on heuristics that may only evaluate local power balancing requirements. The Hamiltonian surface shaping and power flow control (HSSPFC) method can also be utilized to analyze and design the lunar LDCMG power distribution network and ESS. In this research, the HSSPFC method will be utilized to determine the ideal energy storage requirements for ESS and the optimally distributed control architecture.
X