Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

2003-07-07
2003-01-2421
The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.
Technical Paper

A Computer Controlled Power Tool for Servicing the Hubble Space Telescope

1996-07-01
961531
The Hubble Space Telescope (HST) was designed to be serviced from the shuttle by astronauts performing extravehicular activities (EVA). During the first HST Servicing Mission (STS-61) two types of power tools were flown, the Power Ratchet Tool (PRT) and the HST Power Tool. Each tool had both benefits and drawbacks. An objective for the second HST servicing mission was to combine the reliability, accuracy, and programmability of the PRT with the pistol grip ergonomics and compactness of the HST Power Tool into a new tool called the EVA Pistol Grip Tool (PGT). The PGT is a self-contained, microprocessor controlled, battery powered, 3/8-inch drive hand-held tool. The PGT may also be used as a non-powered ratchet wrench. Numerous torque, speed, and turn or angle limits can be programmed into the PGT for use during various servicing missions. Batteries Modules are replaceable during ground, Intravehicular Activities (IVA), and EVA operations.
Technical Paper

Performance of the CAPL 2 Flight Experiment

1996-07-01
961432
This paper describes flight test results of the CAPL 2 Flight Experiment, which is a full scale prototype of a capillary pumped loop (CPL) heat transport system to be used for thermal control of the Earth Observing System (EOS-AM) instruments. One unique feature of CAPL 2 is its capillary starter pump cold plate design, which consists of a single capillary starter pump and two heat pipes. The starter pump enhances start-up success due to its self-priming capability, and provides the necessary capillary pumping force for the entire loop. The heat pipes provide the required isothermalization of the cold plate. Flight tests included those pertinent to specific EOS applications and those intended for verifying generic CPL operating characteristics and performance limits. Experimental results confirmed that the starter pump was indeed self-priming and the loop could be successfully started every time.
Technical Paper

Design Evolution of the Capillary Pumped Loop (CAPL 2) Flight Experiment

1996-07-01
961431
The Capillary Pumped Loop Flight Experiment (CAPL 2) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in microgravity, prior to implementation on EOS. CAPL 1 was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Start-up difficulties on CAPL 1 led to a redesign of the experiment (CAPL 2) and a reflight on STS-69 in September of 1995. The CAPL 2 flight was extremely successful and the new “starter pump” design is now baselined for the EOS application. This paper emphasizes the design history, the CAPL 2 design, and lessons learned from the CAPL program.
X