Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of a Rapid Cycling CO2 and H2O Removal Sorbent

2007-07-09
2007-01-3271
The National Aeronautics and Space Administration's (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility for Extravehicular Activity (EVA) duration and objectives. Use of regenerable systems that reduce weight and volume of the space suit life support system is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the EVA with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced.
Technical Paper

Active Thermal Control Systems for Lunar and Martian Exploration

1990-07-01
901243
Extended manned missions to the lunar and martian surfaces pose new challenges for active thermal control systems (ATCS's). Moderate-temperature heat rejection becomes a problem during the lunar day, when the effective sink temperature exceeds that of the heat-rejection system. The martian atmosphere poses unique problems for rejecting moderate-temperature waste heat because of the presence of carbon dioxide and dust. During a recent study, several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators.
Technical Paper

Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring

2009-07-12
2009-01-2470
Fire detection, post fire atmospheric monitoring, fire extinguishing, and post fire atmospheric cleaning are vital components of a spacecraft fire response system, Preliminary efforts focused on the technology evaluation of fire detection, post fire atmospheric monitoring and post fire cleanup systems under realistic conditions are described in this paper. While the primary objective of testing is to determine the performance of a smoke mitigation filter, supplemental evaluations measuring the smoke-filled chamber handheld Commercial Off The Shelf (COTS) atmospheric monitoring devices (combustion product monitors) are conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator.
Technical Paper

Rapid Cycling CO2 and H2O Removal System for EMU

2006-07-17
2006-01-2198
Future National Aeronautics and Space Administration (NASA)-planned missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. TDA Research, Inc. (TDA) is developing a high capacity, rapid cycling sorbent to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

Display Comparison for Six-Degree-of-Freedom Force/Torque Control

1985-10-14
851860
A device has been developed (by others) which senses and displays forces and torques generated at the end of a manipulator arm. This device was integrated and evaluated in the one-g version of the Space Transportation System Canadian remote manipulator system arm at the NASA Lyndon B. Johnson Space Center. Evaluations of astronaut performance and preference under varying task conditions and using alternative display formats were performed. Findings indicate that providing visual graphic feedback of force and torque information affects both the time taken to do manipulator tasks and the size of forces generated during these tasks. Also, the format of graphics used affects operator reaction time.
Journal Article

International Space Station USOS Crew Quarters Development

2008-06-29
2008-01-2026
The International Space Station (ISS) United States Operational Segment (USOS) currently provides a Temporary Sleep Station (TeSS) as crew quarters for one crewmember in the Laboratory Module. The Russian Segment provides permanent crew quarters (Kayutas) for two crewmembers in the Service Module. The TeSS provides limited electrical, communication, and ventilation functionality. A new permanent rack sized USOS ISS Crew Quarters (CQ) is being developed. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The new CQs will provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, controllable airflow, communication equipment, redundant electrical systems, and redundant caution and warning systems.
Technical Paper

Phase Change Material Heat Exchanger Life Test

2009-07-12
2009-01-2589
Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a “thermal capacitor,” storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions.
X