Refine Your Search

Topic

Search Results

Journal Article

Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2008/2009

2009-07-12
2009-01-2445
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
Journal Article

Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Testing 2008/2009

2009-07-12
2009-01-2444
Developmental efforts are seeking to improve upon the efficiency and reliability of typical packed beds of sorbent pellets by using structured sorbents and alternative bed configurations. The benefits include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption leading to increased process efficiency. Test results that demonstrate such improvements are described and presented.
Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2006/2007

2007-07-09
2007-01-3254
The design of a vacuum-swing adsorption process to remove metabolic water, metabolic carbon dioxide, and metabolic and equipment generated trace contaminant gases from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. For Orion, the approach is taken that all metabolic water must be removed by the Sorbent-Based Atmosphere Revitalization System (SBAR), a technology approach that has not been used in previous spacecraft life support systems. Design and development of a prototype SBAR, a facility test stand, and subsequent testing of the SBAR in late 2006 and early 2007 is discussed.
Technical Paper

Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

1997-07-01
972331
The paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station(ISS).Current activities computer model development, component design and development, subsystem/integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2007/2008

2008-06-29
2008-01-2082
The design of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. The approach for Orion is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of the Sorbent Based Atmosphere Regeneration (SBAR) system, including test articles, a facility test stand, and full-scale testing in late 2007 and early 2008 is discussed.
Technical Paper

Life Support Requirements and Technology Challenges for NASA's Constellation Program

2008-06-29
2008-01-2018
NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for extended durations at the lunar outpost with limited resource resupply capability will require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration Extra-vehicular Activity's (EVA's) will be particularly challenging.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

2003-07-07
2003-01-2538
An austere fiscal environment in the aerospace community creates pressure to reduce program costs, often minimizing or even deleting human interface requirements from the design process. With the assumption that the flight crew can recover, in real time, from a poorly human factored space vehicle design, the classical crew interface requirements have either been not included in the design or not properly funded, even though they are carried as requirements. Cost cuts have also affected the quality of retained human factors engineering personnel. Planning is ongoing to correct these issues. Herein are techniques for ensuring that human interface requirements are integrated with flight design from proposal through verification and launch activation.
Technical Paper

Development of a Direct Drive Hall Effect Thruster System

2002-10-29
2002-01-3212
A three-year program to develop a Direct Drive Hall Effect Thruster (D2HET) system began 15 months ago as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems. The D2HET will employ solar arrays that operate at voltages greater than 300V, and will be an enabling technology for affordable planetary exploration. It will also be a stepping-stone in the production of the next generation of power systems for Earth orbiting satellites. This paper provides a general overview of the program and reports the first year's findings from both theoretical and experimental components of the program.
Technical Paper

OPAD Status Report: Investigation of SSME Component Erosion

1992-04-01
921030
Significant erosion of preburner faceplates was observed during recent Space Shuttle Main Engine (SSME) test firings at the NASA Technology Test Bed (TTB), Marshall Space Flight Center (MSFC), Al. The OPAD instrumentation acquired exhaust plume spectral data during each test which indicate the occurrence of metallic species consistent with faceplate component composition. A qualitative analysis of the spectral data was conducted to evaluate the state of the engine versus time for each test according to the nominal conditions of TTB firing #17 and #18. In general the analyses indicate abnormal erosion levels at or near startup. Subsequent to the initial erosion event, signal levels tend to decrease towards nominal baseline values. These findings, in conjunction with post-test engine inspections, suggest that in cases under study, the erosion may not have been catastrophic to the immediate operation of the engine.
Technical Paper

Performance Characterization of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Based on Integrated Tests with Carbon Dioxide Removal and Reduction Assemblies

2006-07-17
2006-01-2126
CO2 removal, recovery and reduction are essential processes for a closed loop air revitalization system in a crewed spacecraft. Typically, a compressor is required to recover the low pressure CO2 that is being removed from the spacecraft in a swing bed adsorption system. This paper describes integrated tests of a Temperature-Swing Adsorption Compressor (TSAC) with high-fidelity systems for carbon dioxide removal and reduction assemblies (CDRA and Sabatier reactor). It also provides details of the TSAC operation at various CO2 loadings. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure. TSAC utilizes the principle of temperature-swing adsorption compression and has no rapidly moving parts.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle

2006-07-17
2006-01-2219
The design of a vacuum-swing adsorption process to remove metabolic water, metabolic carbon dioxide, and metabolic and equipment generated trace contaminant gases from the crew exploration vehicle (CEV) atmosphere is presented. For the CEV, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach that has not been used in previous spacecraft life support systems. Design and development of a prototype SBAR, a full scale and subscale facility test stand, and other aspects of the SBAR development program is discussed.
Technical Paper

Spacelab Carrier Complement Thermal Design and Performance

1992-07-01
921278
Spacelab mission thermal integration is one of many activities performed at the NASA Marshall Space Flight Center (MSFC). The Spacelab carrier system has been expanded from the original module/pallet system. Thermodynamics and heat transfer as well as fluid mechanics and fluid dynamics are the support areas discussed here. This support incorporates preflight mission analysis in conjunction with real time mission support and postflight mission analysis. This paper summarizes these activities for the Spacelab carrier complement, citing some of the more challenging thermal control designs for which the Center is and has been responsible. Technology advancements, coupled with the ever increasing needs of the payload community and the desire for flexibility to manifest several distinct payload elements on a single mission, has aided in the evolution of a more diverse Spacelab carrier complement.
Technical Paper

Hubble Space Telescope Nickel-Hydrogen Battery and Cell Testing - An Update

1992-08-03
929089
Nickel-hydrogen (Ni-H2) technology has only recently been utilized in low earth orbit (LEO) applications. The Hubble Space Telescope (HST) program, over the past five years, played a key role in developing this application. The HST not only became the first reported, nonexperimental program to fly Ni-H2 batteries in a LEO application, but funded numerous, ongoing tests that served to validate this usage. The Marshall Space Flight Center (MSFC) has been testing HST Ni-H2 batteries and cells for over three years. The major tests include a 6-battery system (SBS) test and a single 22-cell battery (FSB) test. The SBS test has been operating for 34 months and completed approximately 15,200 cycles. The performance of the cells and batteries in this test is nominal. Currently, the batteries are operating at an average end-of-charge (EOC) pressure that indicates an average capacity of approximately 79 ampere-hours (Ah).
Technical Paper

A Description and Comparison of U.S. and Russian Urine Processing Hardware for the International Space Station

1994-06-01
941251
The Russian space program has maintained crews on long duration space flights nearly continuously over the past two decades. As a result, a strong emphasis has been placed on the development of regenerative life support systems. One of these systems is a urine processor which has been operating on-orbit since 1990. The U. S has also been developing urine processing systems to reclaim water from urine over the past twenty years. This paper will describe the two different technologies used for urine processing for long-term human presence in space and will compare the operating characteristics of the two systems.
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

International Space Station Environmental Control and Life Support System Technology Evolution

1996-07-01
961475
The baseline Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS) includes regenerative and non-regenerative technologies for Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Fire Detection and Suppression (FDS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Waste Management (WM), and Vacuum System (VS). The U.S. Lab module will contain complete THC and ACS subsystems and an open loop AR including a Carbon Dioxide Removal Assembly (CDRA), Trace Contaminant Control Subassembly (TCCS), and a Major Constituent Analyzer (MCA). An Oxygen Generation Assembly (OGA) is added with the U. S. Hab module, along with the WRM and WM subsystems. The final baseline configuration is a closed water loop and partially closed atmosphere loop and represents the best available mature technologies.
X