Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Structural and Radiation Shielding Properties of Non-parasitic, Multi-functional Microporous Carbon for Aerospace Applications

2007-07-09
2007-01-3111
AFR, Inc. is developing a multifunctional Carbon material that, in addition to excellent radiation shielding characteristics, is appropriate for certain energy storage applications. As an excellent Hydrogen gas sorbent, it increases the usable storage capacity of a gas cylinder by ∼25% at 3500 PSI and by ∼150% at 500 PSI. Our ongoing NASA Langley funded study shows that when a sorbent-filled tank is charged with hydrogen, it provides shielding superior to polyethylene against most types of ionizing particles. Even as hydrogen is consumed, the carbon and tank ensure that significant radiation shielding capability is maintained. In addition to storing hydrogen, the carbon material also displays considerable strength. In this paper, we explore some of its mechanical properties that show this material is very versatile and highly multifunctional.
Technical Paper

Resistive Slab Modeling for Predicting Lightning Currents in Fastened Composite Structure

2001-09-11
2001-01-2875
Analysis of lightning direct-effects damage to structure and the design of test specimens and test fixtures to investigate these effects requires knowledge of structural boundary currents resulting from a lightning attachment. Since no convenient method for direct measurement of structural boundary conditions was available, a model called Resistive Slab Analysis at Boundaries (RSLAB) was developed to fill this need. RSLAB utilizes the physical and electrical properties of interconnected structural slabs to compute the potential distribution and current flow at structural boundaries due to simulated lightning current injected into the structure. The analysis results are validated by measurements on a fastened composite wingbox.
Technical Paper

A Comparison of MAFIA / Microwave Studio Calculations with Experimental Results for Indirect Lightning Effects on Carbon Composite Structures

2001-09-11
2001-01-2886
A study of indirect lightning effects on carbon composite structures with internal tubing is performed using the ‘ab initio’ Maxwell equation codes MAFIA and Microwave Studio (MWS). The modeling is performed both in the time and frequency domain by a finite difference method that can accommodate anisotropic media. Both time and frequency domains are used to better reflect the actual testing performed on aircraft. Solutions in frequency domain also help to overcome limitations of the time domain calculations. Time calculations cannot be performed for pulses longer than 100–200 μs due to the Courant condition and computer time limitations and hence, low frequency resonances of the system could be missed. Three dimensional frequency domain calculations are available with MAFIA and MWS, while time domain results are available in MAFIA, MWS and EMA3D.
X