Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Results of Plasma-Generated Hydrophilic and Antimicrobial Surfaces for Fluid Management Applications

2007-07-09
2007-01-3139
Humidity control within confined spaces is of great importance for existing NASA environmental control systems and Exploration applications. The Engineered Multifunction Surfaces (MFS) developed in this STTR Phase II form the foundation for a modular and scalable Distributed Humidity Control System (DHCS) while minimizing power, size and mass requirements. Key innovations of the MFS-based DHCS include passive humidity collection, control, and phase separation without moving parts, durable surface properties without particulate generation and accumulation, and the ability to scale up, or network in a distributed manner, a compact, modular device for Exploration applications including space suits, CEV, Rovers, Small and Transit Habitats and Large Habitats.
Technical Paper

Humidity and Temperature Control in the ASTROCULTURE™ Flight Experiment

1994-06-01
941282
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Previous Space Shuttle flights (STS-50 and STS-57) have successfully demonstrated the ability to control water movement through a particulate rooting matrix in microgravity and the ability of LED lighting systems to provide high levels of irradiance without excessive heat build-up in microgravity. The humidity and temperature control system used in the middeck flight unit is described in this paper. The system controls air flow and provides dehumidification, humidification, and condensate recovery for a plant growth chamber volume of 1450 cm3.
Technical Paper

Estimating Battery State-of-Charge using Machine Learning and Physics-Based Models

2023-04-11
2023-01-0522
Lithium-ion and Lithium polymer batteries are fast becoming ubiquitous in high-discharge rate applications for military and non-military systems. Applications such as small aerial vehicles and energy transfer systems can often function at C-rates greater than 1. To maximize system endurance and battery health, there is a need for models capable of precisely estimating the battery state-of-charge (SoC) under all temperature and loading conditions. However, the ability to perform state estimation consistently and accurately to within 1% error has remained unsolved. Doing so can offer enhanced endurance, safety, reliability, and planning, and additionally, simplify energy management. Therefore, the work presented in this paper aims to study and develop experimentally validated mathematical models capable of high-accuracy battery SoC estimation.
X