Refine Your Search

Topic

Search Results

Standard

Metallic Seal Rings for High Temperature Reciprocating Hydraulic Service

2011-12-19
CURRENT
AIR1077A
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
Standard

METALLIC SEAL RINGS FOR HIGH TEMPERATURE RECIPROCATING HYDRAULIC SERVICE

1992-07-01
HISTORICAL
AIR1077
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
Standard

SELECTING SLIPPER SEALS FOR HYDRAULIC-PNEUMATIC FLUID POWER APPLICATIONS

1973-06-01
HISTORICAL
AIR1244
The SLIPPER SEAL is defined and the basic types in current use are described. Guide lines for selecting the type of Slipper Seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics and interchangeability.
Standard

Aerospace, Slipper Seals, Selection for Fluid Power Applications

2022-08-05
CURRENT
AIR1244B
This SAE Aerospace Information Report (AIR) provides basic information on the use of slipper seal sealing devices when used as piston (OD) and rod (ID) seals in aerospace fluid power components such as actuators, valves, and swivel joints, including: The definition of a slipper seal and the description of the basic types in use. Guidelines for selecting the type of slipper seal for a given design requirement are provided in terms of friction, leakage, service life, installation characteristics, and interchangeability.
Standard

O-Ring Molded from AMS7601 Butyl Rubber

2020-06-02
CURRENT
AS7985
This standard establishes the dimensional and visual quality requirements, lot requirements and packaging and labeling requirements for O-rings molded from AMS7601 butyl rubber. It shall be used for procurement purposes.
Standard

Calculations and Background Information Used to Specify the Dimensions in AS6235

2021-11-09
CURRENT
AIR7358
This SAE Aerospace Information Report (AIR) contains a description of the design approach, the calculations, some comparisons to alternate SAE Aerospace Recommended Practice (ARP) documents, and the background information used to generate the standard face seal gland dimensions specified in AS6235. NOTE: This AIR should be read in conjunction with AS6235. In some instances, the information contained within AS6235 is repeated for clarity.
Standard

O-RING MOLDED FROM AMS7379 FLUOROCARBON (FKM) MATERIAL

2023-06-06
CURRENT
AS5729B
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS AND PACKAGING AND LABELING REQUIREMENTS FOR O-RINGS MOLDED FROM AMS7379 FLUOROCARBON (FKM) RUBBER. IT SHALL BE USED FOR PROCUREMENT PURPOSES.
Standard

Recommendations for Installation of Seals in Standard Glands

2016-02-16
CURRENT
ARP5555
This SAE Aerospace Recommended Practice (ARP) contains guidance regarding hardware design and installation procedures for seals in hydraulic components that utilize standard seal glands in accordance with AS4716, AS4832, AS4088, AS4052, AS5857, and AS6235.
Standard

Retainers (Backup Rings), Hydraulic and Pneumatic, Polytetrafluoroethylene Resin, Solid, Un-Cut, For Use in AS4716 Glands

2015-04-06
HISTORICAL
AS5782A
This SAE Aerospace Standard (AS) covers solid, uncut polytetrafluoroethylene (PTFE) retainers (backup rings) for use in glands in accordance with AS4716. They are for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with O-rings, packings and other elastomeric seals for static and dynamic applications. Because of the construction of groove dimensions, backup rings specific to rod applications are designated “R” - Rod (Female), backup rings specific to piston applications are designated “P” - Piston (Male). Piston and rod types of virgin pigmented PTFE are also identified by color code which also distinguishes parts to this standard from those made from virgin PTFE to other standards.
Standard

Retainers (Backup Rings), Hydraulic and Pneumatic, Polytetrafluoroethylene Resin, Solid, Un-Cut, For Use in AS4716 Glands

2013-11-22
HISTORICAL
AS5782
This SAE Aerospace Standard (AS) covers solid, uncut polytetrafluoroethylene (PTFE) retainers (backup rings) for use in glands in accordance with AS4716. They are for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with O-rings, packings and other elastomeric seals for static and dynamic applications. Because of the construction of groove dimensions, backup rings specific to rod applications are designated “R” - Rod (Female), backup rings specific to piston applications are designated “P” - Piston (Male). Piston and rod types of virgin pigmented PTFE are also identified by color code which also distinguishes parts to this standard from those made from virgin PTFE to other standards. Backup rings specified herein have been designed for a temperature range of -65 to 275 °F (-54 to 135 °C) and a nominal operating pressure of 3000 psi (20.7 MPa) for code 09 material (AMS 3678/9).
Standard

Hydraulic and Pneumatic Retainers (Backup Rings), Polytetrafluoroethylene (PTFE) Resin

2020-01-03
CURRENT
AS8791D
This specification and part standard specifies polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for scarf-cut retainers (backup rings) previously specified by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with seals and O-rings.
X