Refine Your Search

Topic

Search Results

Standard

Metallic Seal Rings for High Temperature Reciprocating Hydraulic Service

2011-12-19
CURRENT
AIR1077A
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
Standard

METALLIC SEAL RINGS FOR HIGH TEMPERATURE RECIPROCATING HYDRAULIC SERVICE

1992-07-01
HISTORICAL
AIR1077
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
Standard

SELECTING SLIPPER SEALS FOR HYDRAULIC-PNEUMATIC FLUID POWER APPLICATIONS

1973-06-01
HISTORICAL
AIR1244
The SLIPPER SEAL is defined and the basic types in current use are described. Guide lines for selecting the type of Slipper Seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics and interchangeability.
Standard

Aerospace, Slipper Seals, Selection for Fluid Power Applications

2022-08-05
CURRENT
AIR1244B
This SAE Aerospace Information Report (AIR) provides basic information on the use of slipper seal sealing devices when used as piston (OD) and rod (ID) seals in aerospace fluid power components such as actuators, valves, and swivel joints, including: The definition of a slipper seal and the description of the basic types in use. Guidelines for selecting the type of slipper seal for a given design requirement are provided in terms of friction, leakage, service life, installation characteristics, and interchangeability.
Standard

Polymeric Bearings for Linear Actuators

2023-06-20
CURRENT
ARP7204
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the application of polymeric bearings for linear actuation systems. Design considerations are included for recommended fit and function in conjunction with material selection and load-bearing capability.
Standard

Recommendations for Installation of Seals in Standard Glands

2016-02-16
CURRENT
ARP5555
This SAE Aerospace Recommended Practice (ARP) contains guidance regarding hardware design and installation procedures for seals in hydraulic components that utilize standard seal glands in accordance with AS4716, AS4832, AS4088, AS4052, AS5857, and AS6235.
Standard

Retainers (Backup Rings), Hydraulic and Pneumatic, Polytetrafluoroethylene Resin, Solid, Un-Cut, For Use in AS4716 Glands

2015-04-06
HISTORICAL
AS5782A
This SAE Aerospace Standard (AS) covers solid, uncut polytetrafluoroethylene (PTFE) retainers (backup rings) for use in glands in accordance with AS4716. They are for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with O-rings, packings and other elastomeric seals for static and dynamic applications. Because of the construction of groove dimensions, backup rings specific to rod applications are designated “R” - Rod (Female), backup rings specific to piston applications are designated “P” - Piston (Male). Piston and rod types of virgin pigmented PTFE are also identified by color code which also distinguishes parts to this standard from those made from virgin PTFE to other standards.
Standard

Retainers (Backup Rings), Hydraulic and Pneumatic, Polytetrafluoroethylene Resin, Solid, Un-Cut, For Use in AS4716 Glands

2013-11-22
HISTORICAL
AS5782
This SAE Aerospace Standard (AS) covers solid, uncut polytetrafluoroethylene (PTFE) retainers (backup rings) for use in glands in accordance with AS4716. They are for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with O-rings, packings and other elastomeric seals for static and dynamic applications. Because of the construction of groove dimensions, backup rings specific to rod applications are designated “R” - Rod (Female), backup rings specific to piston applications are designated “P” - Piston (Male). Piston and rod types of virgin pigmented PTFE are also identified by color code which also distinguishes parts to this standard from those made from virgin PTFE to other standards. Backup rings specified herein have been designed for a temperature range of -65 to 275 °F (-54 to 135 °C) and a nominal operating pressure of 3000 psi (20.7 MPa) for code 09 material (AMS 3678/9).
Standard

Hydraulic and Pneumatic Retainers (Backup Rings), Polytetrafluoroethylene (PTFE) Resin

2020-01-03
CURRENT
AS8791D
This specification and part standard specifies polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for scarf-cut retainers (backup rings) previously specified by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with seals and O-rings.
Standard

Hydraulic and Pneumatic Retainers (Back-Up Rings), Polytetrafluoroethylene (PTFE) Resin

2014-10-27
HISTORICAL
AS8791C
This specification and part standard covers polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for scarf-cut retainers (back-up rings) previously covered by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with seals and O-rings.
Standard

Hydraulic and Pneumatic Retainers (Back-Up Rings), Polytetrafluoroethylene (PTFE) Resin

2009-03-13
HISTORICAL
AS8791B
This specification and part standard covers polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for retainers (back-up rings) previously covered by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with packings and O-rings.
Standard

Sealing Techniques for Missile Applications

2008-07-16
HISTORICAL
ARP1833A
The purpose of this standard is to provide the missile hydraulic and pneumatic component designer with information learned, tested and substantiated in correction of problems and failures experienced with seals that are subject to the unique requirements of missile static storage and subsequent dynamic operational conditions. Missile hydraulic and pneumatic component designers have been handicapped by the absence of concise design criteria for two difficult sealing conditions usually existing in missile applications as follows: Static pressure condition - Low pressure for long periods in a cyclic temperature environment (i.e., long term storage requirements). Dynamic pressure condition - High pressures suddenly applied in an extreme temperature environment (i.e., operational firing requirement).
X