Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Aerodynamic Drag Reduction on a Simple Car-Like Shape with Rear Upper Body Taper

2013-04-08
2013-01-0462
Various techniques to reduce the aerodynamic drag of bluff bodies through the mechanism of base pressure recovery have been investigated. These include, for example, boat-tailing, base cavities and base bleed. In this study a simple body representing a car shape is modified to include tapering of the rear upper body on both roof and sides. The effects of taper angle and taper length on drag and lift characteristics are investigated. It is shown that a significant drag reduction can be obtained with moderate taper angles. An unexpected feature is a drag rise at a particular taper length. Pressure data obtained on the rear surfaces and some wake flow visualisation using PIV are presented.
Technical Paper

Aerodynamic Side Forces on Passenger Cars at Yaw

2016-04-05
2016-01-1620
Side force has an influence on the behaviour of passenger cars in windy conditions. It increases approximately linearly with yaw angle over a significant range of yaw for almost all cars and the side force derivative, (the gradient of side force coefficient with yaw angle), is similar for vehicles of a given category and size. The shape factors and components which affect side force for different vehicle types are discussed. The dominant influence on side force, for most cars, however, is shown to be the vehicle height which is consistent with slender wing theory if the car and its mirror image are considered. This simple theory is shown to apply to 1-box and 2- box shapes, covering most MPVs, hatchbacks and SUVs, but does not adequately represent the side forces on notchback and fastback car shapes. Data from simple bodies is used to develop a modification to the basic theory, which is applied to these vehicle types.
Journal Article

Aerodynamic Drag of Passenger Cars at Yaw

2015-04-14
2015-01-1559
The aerodynamic drag characteristics of a passenger car are typically defined by a single parameter, the drag coefficient at zero yaw angle. While this has been acceptable in the past, it may not allow a true comparison between vehicles with regard to the impact of drag on performance, especially fuel economy. An alternative measure of aerodynamic drag should take into account the effect of non-zero yaw angles and some proposals have been made in the past, including variations of wind-averaged drag coefficient. For almost all cars the drag increases with yaw, but the increase can vary significantly between vehicles. In this paper the effect of various parameters on the drag rise with yaw are considered for a range of different vehicle types. The increase of drag with yaw is shown to be an essentially induced drag, which is strongly dependent on both side force and lift. Shape factors which influence the sensitivity of drag with yaw are discussed.
X