Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Laser-Assisted Filler-Based Joining for Battery Assembly in Aviation

2020-10-19
Abstract A key problem of the construction of fully electric aircraft is the limited energy density of battery packs. It is generally accepted that this can only be overcome via new, denser battery chemistry together with a further increase in the efficiency of power utilization. One appealing approach for achieving the latter is using laser-assisted filler-based joining technologies, which offers unprecedented flexibility for achieving battery cell connections with the least possible electrical loss. This contribution presents our results on the effect of various experimental and process parameters on the electrical and mechanical properties of the laser-formed bond.
Journal Article

An Investigation on the Electrical Energy Capacity of Cylindrical Lithium-Ion and Lithium Iron Phosphate Battery Cells for Hybrid Aircraft

2020-10-19
Abstract Improving the energy performance of batteries can increase the reliability of electric aircraft. To achieve this goal, battery management systems (BMS) are required to keep the temperature within the battery pack and cells below the safety limits and make the temperature distribution as even as possible. Batteries have a limited service life as a result of unwanted chemical reactions, physical changes that cause the loss of active materials in the structure, and internal resistance increase during the charging and discharging cycle of the battery. These changes usually affect the electrical performance of batteries. Battery life can be increased only by reducing or preventing unwanted chemical reactions. Lithium-ion (Li-ion) batteries are a suitable option due to their high specific energy and energy density advantages. In this study, the necessity of heat management is emphasized. The discharge tests of the Li-ion battery provided 94.6 Wh under 10C and 90.9 Wh under 1C.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Lightweight Carbon Composite Chassis for Engine Start Lithium Batteries

2018-03-07
Abstract The supersession of metallic alloys with lightweight, high-strength composites is popular in the aircraft industry. However, aviation electronic enclosures for large format batteries and high power conversion electronics are still primarily made of aluminum alloys. These aluminum enclosures have attractive properties regrading structural integrity for the heavy internal parts, electromagnetic interference (EMI) suppression, electrical bonding for the internal cells, and/or electronics and failure containment. This paper details a lightweight carbon fiber composite chassis developed at Meggitt Sensing Systems (MSS) Securaplane, with a copper metallic mesh co-cured onto the internal surfaces resulting in a 50% reduction in weight when compared to its aluminum counterpart. In addition to significant weight reduction, it provides equal or improved performance with respect to EMI, structural and flammability performance.
Journal Article

Characterization of Particulate Resulting from Oil Contamination of Aircraft Bleed Air

2020-09-14
Abstract Possible oil contamination of aircraft bleed air is an ongoing operational issue for commercial aircraft. A sensitive and reliable method to detect contamination, especially at very low levels, has been elusive due, in part, to the lack of information about the physical nature of oil that results when entrained in the bleed air by an engine compressor. While it was expected that high shear rates in the compressors would result in very finely dispersed particles, detailed data on the size characteristics of these droplets were not available, making it difficult to develop reliable detection techniques. The goal of the reported research was to collect experimental data to provide this information. The concentration and size distribution of particles were measured for bleed air with different rates of controlled oil contamination under various engine operating conditions.
Journal Article

Letter from the Guest Editors

2020-11-20
According to the International Civil Aviation Organization, the world aviation air traffic has grown by an average yearly rate of 5% over the last thirty years, until the devastating downturn brought on by the COVID crisis of 2020. Regardless of the current situation, there are still a number of issues and challenges that the industry is confronted with, not the least of which are related to sustainability, the conversion to electrical usage, the challenge of increasing propulsion efficiency in conventional propulsion, the digital transformation of the entire ecosystem, etc. In response, system developers and researchers in the field are working on a number of key technologies and methodologies to solve some of these issues. The Sustainable Aviation Research Society (SARES), a global organization that seeks to encourage research in this area and helps disseminate knowledge via conferences and symposia, has been organizing meetings to promote sustainable aviation over the five years.
Journal Article

Design and Experiment on Aircraft Electromechanical Actuator Fan at Different Altitudes and Rotational Speeds

2019-06-07
Abstract For electromechanical actuators (EMAs) and electronic devices cooling on aircraft, there is a need to study cooling fan performance at various altitudes from sea level to 12,000 m where the ambient pressure varies from 1 to 0.2 atm. As fan static pressure head is proportional to air density, the fan’s rotational speed has to be increased significantly to compensate for the low ambient pressure of 0.2 atm at the altitude of 12,000 m. To evaluate fan performance for EMA cooling, a high-rotational-speed, commercially available fan made by Ametek with a diameter of ~82 mm and ~3 m3/min zero-load open cooling flow rate when operating at 20,000 rpm was chosen as the baseline. According to fan scaling laws, this fan was expected to meet the cooling needs for an EMA when operating at 0.2 atm. Using a closed flow loop, the performance of the fan operating in the above ambient pressure range and at a rotational speed between 15,000 and 30,000 rpm was evaluated.
Journal Article

Modeling of Ducted-Fan and Motor in an Electric Aircraft and a Preliminary Integrated Design

2018-10-04
Abstract Electric ducted-fans with high power density are widely used in hybrid aircraft, electric aircraft, and VTOL vehicles. For the state-of-the-art electric ducted-fan, motor cooling restricts the power density increase. A motor design model based on the fan hub-to-tip ratio proposed in this article reveals that the thermal coupling effect between fan aerodynamic design and motor cooling design has great potential to increase the power density of the motor in an electric propulsion system. A smaller hub-to-tip ratio is preferred as long as the power balance and cooling balance are satisfied. Parametric study on a current 6 kW electric ducted-fan system shows that the highest motor power density could be increased by 246% based on the current technology. Finally, a preliminary design was obtained and experiments were conducted to prove the feasibility of the model.
Journal Article

Design of a 1.2 kW Interleaved Synchronous Buck Converter for Retrofit Applications in Aviation Systems

2020-10-19
Abstract Presently, 270 V direct current (DC) systems replace older 28 V DC voltage systems in both the civil and military aviation industry due to the requirement for more electrical power needs on board. Therefore, the existing avionics require retrofitting. The conversion from 270 V to 28 V appears to be quite promising for both old and new systems. This study aims to design an interleaved synchronous modular buck converter topology as a candidate for these requirements. Calculations for the converter design are conducted considering aviation standards. Switching with pulse-width modulation (PWM) is used to control the power converter. A double-loop feedback control system based on voltage and current feedback is designed. Therefore, the buck converter circuit with 1145 W power output is proposed, which supplies a 28 V and 41 A DC output from a 270 V DC input. The concept is verified using simulations and hardware-in-the-loop (HIL) experimental results.
Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

2018-05-16
Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Journal Article

Temperature and Consumed Energy Predictions for Air-Cooled Interior Permanent Magnet Motors Driving Aviation Fans—Part 1: Mathematical Analytical Solutions for Incompressible Air Cases

2022-04-13
Abstract The increase in worldwide awareness of environmental issues has necessitated the air transport industry to drastically reduce carbon dioxide emissions. To meet this goal, one solution is the electrification of aircraft propulsion systems. In particular, single-aisle aircraft with partial turboelectric propulsion with approximately 150 passenger seats in the 2030s are the focus. To develop a single-aisle aircraft with partial turboelectric propulsion, an air-cooled interior permanent magnet (IPM) motor with an output of 2 MW is desired. In this article, mathematical system equations that describe heat transfer inside the target air-cooled IPM motor are formulated, and their mathematical analytical solutions are obtained.
Journal Article

Simulated Drag Study of Fuel Tank Configurations for Liquid Hydrogen-Powered Commercial Aircraft

2020-12-09
Abstract The airline industry faces a crisis in the future as consumer demand is increasing, but the environmental effects and depleting resources of kerosene mean that growth is unsustainable. Hydrogen is touted as the leading candidate to replace kerosene, but it needs significant technological and economical endeavors. In such a scenario, cryogenic liquid hydrogen (LH2) is predicted to be the most feasible method of using hydrogen. The major challenge of LH2 as an aircraft fuel is that it requires approximately four times the storage volume of kerosene—due to its lower density. Thus the design of cryogenic storage tanks to handle larger quantities of fuel is becoming increasingly important. But the increase in drag associated with larger storage tanks causes an increase in fuel consumption. Hence, this paper aims to evaluate the aerodynamic performance of different storage configurations and aid in the selection of an economic and efficient storage system.
Journal Article

Energy Harvesting from Landing and Taxiing of Commercial Aircraft

2022-01-11
Abstract We demonstrate a virtual proof-of-concept design and experiment for harvesting energy enabling economic and environment-friendly aircraft by recycling forces for power conversion. The harvesting uses piezoelectric materials for extracting energy from the impact at the touchdown during the landing of an aircraft and direct current (DC) generators powered by the rotational motion of the aircraft wheels during taxiing. The design begins with a multidomain model comprising multibody dynamics, mathematical descriptions, abstract behavioral blocks, and programmed code. Piezoelectric harvesting explores six types of materials consisting of ring and disk pad geometries. Both geometries are typical configurations in suspension systems. Recent advances have shown the potential of getting higher voltage out of new materials properties. Our objective is to determine the useful impact force during a touchdown on the pads and a pad type that maximizes the power transfer.
Journal Article

An Ongoing Safety Risk Assessment and Determination of Correction Time Limit for Civil Aircraft

2022-05-24
Abstract To ensure the ongoing safety of aircraft, it is necessary to conduct risk assessment for those events that occurred during routine operations. Consequently, the corresponding corrective actions should be accomplished within the compliance time if the event was ascertained to be unsafe. However, the existing models of risk assessment and determination of the correction time limit have not dealt with the time-varying failure rate of components. Based on the Gunstone method, this article considers the event risks of the fleet at different correction time limits, combined with the Monte Carlo method to establish a model of risk assessment and determination of the correction time limit. Based on the event risk level and the risk per flight hour, the risks of the event under the condition of no corrective actions and corrective actions with different time limits were assessed, respectively.
Journal Article

Aircraft Cockpit Window Improvements Enabled by High-Strength Tempered Glass

2024-01-25
Abstract This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load.
Journal Article

Determination of the Heat-Controlled Accumulator Volume for the Two-Phase Thermal Control Systems of Spacecraft

2023-09-29
Abstract For spacecraft with high power consumption, it is reasonable to build the thermal control system based on a two-phase mechanically pumped loop. The heat-controlled accumulator is a key element of the two-phase mechanically pumped loop, which allows for the control of pressure in the loop and maintains the required level of coolant boiling temperature or cavitation margin at the pump inlet. There can be two critical modes of loop operation where the ability to control pressure will be lost. The first critical mode occurs when the accumulator fills with liquid at high heat loads. The second critical mode occurs when the accumulator is at low heat loads and partial loss of coolant, for example, due to the leak caused by micrometeorite breakdown. Both modes are caused by insufficient accumulator volume or working fluid charge.
X