Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Disturbance of Electronics in Low-Earth Orbits by High Energy Electron Plasmas

2009-07-12
2009-01-2339
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
Journal Article

International Space Station United States Operational Segment Crew Quarters On-orbit vs. Design Performance Comparison

2009-07-12
2009-01-2367
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. As many as four CQs can be installed in the Node 2 element to increase the ISS crew member size to six. The CQs provide crew members with private space that has enhanced acoustic noise mitigation, integrated radiation-reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack-sized CQ system has multiple crew member restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crew member to personalize his or her CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to Node 2 is described in this paper.
Journal Article

Stator Side Voltage Regulation of Permanent Magnet Generators

2009-11-10
2009-01-3095
Permanent magnet AC generators are robust, inexpensive, and efficient compared to wound-field synchronous generators with brushless exciters. Their application in variable-speed applications is made difficult by the variation of the stator voltage with shaft speed. This paper presents the use of stator-side reactive power injection as a means of regulating the stator voltage. Design-oriented analysis of machine performance for this mode of operation identifies an appropriate level of machine saliency that enables excellent terminal voltage regulation over a specified speed and load range, while minimizing stator current requirements. This paper demonstrates that the incorporation of saliency into the permanent magnet generator can significantly reduce the size of the reactive current source that is required to regulate the stator voltage during operation over a wide range of speeds and loads.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Journal Article

SoH Recognition of Aviation Batteries Via Passive Diagnostic Device

2010-11-02
2010-01-1762
Aviation battery maintenance is trending toward on-condition maintenance. Nickel-Cadmium (NiCd), Valve Regulated Lead-Acid (VRLA), or prospective Li-ion batteries are used to start engines, provide emergency back-up power, and assure ground power capability for maintenance and pre-flight checkout. As these functions are mission essential, State of Health (SoH) recognition is critical. SoH includes information regarding battery energy, power and residual cycle life. This paper describes an SoH recognition technique for on-board aviation batteries and presents a passive diagnostic device (PDD). The PDD monitors on-board system battery current, voltage and ambient temperature and utilizes no active signals to the battery which can be restricted or even prohibited in order to avoid any interference with the vehicle electrical system.
Journal Article

System Integration of a Safe, High Power, Lithium Ion Main Battery into a Civil Aviation Aircraft

2010-11-02
2010-01-1770
The Cessna Citation CJ4, certified on March 12, 2010, is believed to be the first civil aircraft with a Lithium Ion main battery. The 26.4VDC, 44Ah Lithium Ion main battery weighs 54 lbs, a 35% weight saving over a Nickel-Cadmium battery. Using phosphate-based Lithium Ion cells, which have no positive feedback thermal runaway failure mode, system integration of the battery and aircraft architecture design is simpler. Electronics and software are needed to optimize life only, not to ensure safety. Emergency discharge with failed electronics is enabled with the selection of a less volatile chemistry, the use of an analog Module Management System for cell balancing and protection, and the use of a microcontroller-based digital Central Monitoring System that reports health. System safety failure hazard assessment is considered Major, and the battery software is certified to the requirements of RTCA DO-178B, Design Assurance Level C.
Journal Article

Effect of Different B20 Fuels on Laboratory-Aged Engine Oil Properties

2010-10-25
2010-01-2102
Biodiesel-blended fuel is increasingly becoming available for diesel engines. Due to seasonal and economic factors, biodiesel available in filling stations can be sourced from varying feedstocks. Moreover, biodiesel may not contain the minimum oxidative stability required by the time it is used by the automotive consumer. With fuel dilution of engine oil accelerated by post-injection of fuel for regeneration of diesel particulate filters, it is necessary to investigate whether different biodiesel feedstocks or stabilities can affect engine oil properties. In this work, SAE 15W-40 CJ-4 is diluted with B20 fuel, where the B20 was prepared with soy methyl ester (SME) B100 with high Rancimat oxidative stability, SME B100 with low oxidative stability, and lard methyl ester (LME). The oils were then subjected to laboratory aging simulating severe drive cycles. At intermediate aging times, samples were obtained and additional B20 was added to simulate on-going fuel dilution.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

Controlling Lubricant-Derived Phosphorous Deactivation of the Three-Way Catalysts Part 2: Positive Environmental Impact of Novel ZDP Technology

2010-10-25
2010-01-2257
Prior technical work by various OEMs and lubricant formulators has identified lubricant-derived phosphorus as a key element capable of significantly reducing the efficiency of modern emissions control systems of gasoline-powered vehicles ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ). However, measuring the exact magnitude of the detriment is not simple or straightforward exercise due to the many other sources of variation which occur as a vehicle is driven and the catalyst is aged ( 1 ). This paper, the second one in the series of publications, examines quantitative sets of results generated using various vehicle and exhaust catalyst testing methodologies designed to follow the path of lubricant-derived phosphorous transfer from oil sump to exhaust catalytic systems ( 1 ).
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Journal Article

Standardized Electrical Power Quality Analysis in Accordance with MIL-STD-704

2010-11-02
2010-01-1755
MIL-STD-704 defines power quality in terms of transient, steady-state, and frequency-domain metrics that are applicable throughout a military aircraft electric power system. Maintaining power quality in more electric aircraft power systems has become more challenging in recent years due to the increase in load dynamics and power levels in addition to stricter requirements of power system characteristics during a variety of operating conditions. Further, power quality is often difficult to assess directly during experiments and aircraft operation or during data post-processing for the integrated electric power system (including sources, distribution, and loads). While MIL-STD-704 provides guidelines for compliance testing of electric load equipment, it does not provide any instruction on how to assess the power quality of power sources or the integrated power system itself, except the fact that power quality must be satisfied throughout all considered operating conditions.
Journal Article

Man Machine Interface Requirement Validation in Military Aircraft Certification

2009-11-10
2009-01-3112
Increasing electronic controls in aircraft flight deck, especially in military aircrafts, demands special attention from crew workload assessment and human error analysis point of view. The main objective for the Authority is to validate that the crew workload is adequate for different and complicated military missions. Besides, human error analysis is a regulatory requirement in Airworthiness Certification of airplanes. Human errors need to be observed during simulated operational use of novelties and analyzed later (during the debriefing with pilots or during the results analysis). The main objective during the debriefing is to identify their causes, their consequence, their criticality and the current safety barriers in terms of human errors management. Simulators offer wide range of capability to identify the problems in early stages of the design. Degree of fidelity needed on evaluation media is related with the complexity of the military mission and project budget.
Journal Article

Fabrication of Titanium Aerospace Hardware using Elevated Temperature Forming Processes

2010-09-28
2010-01-1834
Titanium is a difficult material to fabricate into complex configurations. There is several elevated temperature forming processes available to produce titanium components for aerospace applications. The processes to be discussed are Superplastic Forming (SPF), hot forming and creep forming. SPF uses a tool that contains the required configuration and seals around the periphery so inert gas pressure can be used to form the material. Of the processes to be discussed, this is the one that can produce the most complex shapes containing the tightest radii. A variation of the process combines an SPF operation with diffusion bonding (SPF/DB) of two or more pieces of titanium together to produce integrally stiffened structure containing very few fasteners. Another process for shaping titanium is hot forming. In this process, matched metal tools, offset by the thickness of the starting material, are used to form the part contour at elevated temperature.
Journal Article

Lifetime Prediction of DC-Link Film Capacitors using a Stochastic Model Combined by Random Variable and Gamma Process

2014-04-01
2014-01-0347
In electronic vehicles (EVs) or hybrid electronic vehicles (HEVs), an inverter system has a direct-current-link capacitor (DC-link capacitor) which provides reactive power, attenuates ripple current, reduces the emission of electromagnetic interference, and suppresses voltage spikes. A film capacitor has been used as the DC-link capacitor in high level power system, but the film capacitor's performance has deteriorated over operating time. The decreasing performance of the film capacitor may cause a problem when supplying and delivering energy from the battery to the vehicle's power system. Therefore, the lifetime prediction of the film capacitor could be one of critical factors in the EVs and HEVs. For this reason, the lifetime and reliability of the film capacitor are key factors to show the stability of the vehicle inverter system. There are a lot of methods to predict the lifetime of the film capacitor.
Journal Article

Investigation of Wheel Aerodynamic Resistance of Passenger Cars

2014-04-01
2014-01-0606
There are a number of numerical and experimental studies of the aerodynamic performance of wheels that have been published. They show that wheels and wheel-housing flows are responsible for a substantial part of the total aerodynamic drag on passenger vehicles. Previous investigations have also shown that aerodynamic resistance moment acting on rotating wheels, sometimes referred to as ventilation resistance or ventilation torque is a significant contributor to the total aerodynamic resistance of the vehicle; therefore it should not be neglected when designing the wheel-housing area. This work presents a numerical study of the wheel ventilation resistance moment and factors that affect it, using computational fluid dynamics (CFD). It is demonstrated how pressure and shear forces acting on different rotating parts of the wheel affect the ventilation torque. It is also shown how a simple change of rim design can lead to a significant decrease in power consumption of the vehicle.
Journal Article

Impact of Engine Certification Standards on the Design Requirements of More-Electric Engine Electrical System Architectures

2014-09-16
2014-01-2119
The development of the More-Electric Engine (MEE) concept will see an expansion in the power levels, functionality and criticality of electrical systems within engines. However, to date, these more critical electrical systems have not been accounted for in existing engine certification standards. To begin to address this gap, this paper conducts a review of current engine certification standards in order to determine how these standards will impact on the design requirements of More-Electric Engine (MEE) electrical system architectures. The paper focuses on determining two key architectural requirements: the number of individual failures an architecture can accommodate and still remain functional and the rate at which these failures are allowed to occur.
Journal Article

Demonstration of a Compact Hydrogen Fuel Cell Power System for UAS Propulsion

2014-09-16
2014-01-2223
We have assembled and demonstrated a prototype power system that uses an innovative hydrogen generator to fuel an ultra-compact PEM fuel cell that is suitable for use in small unmanned aerial system (UAS) propulsion systems. The hydrogen generator uses thermal decomposition of ammonia borane (AB) to produce hydrogen from a very compact and lightweight package. An array of AB fuel pellets inside a low pressure container is activated sequentially to produce hydrogen on demand as it is consumed by the fuel cell. The fuel cell plant utilized in the power system prototype has been flown as part of several small UAS development programs and has logged hundreds of hours of flight time. The plant was designed specifically to be readily integrated with a range of hydrogen fueling subsystems and contains the balance of plant necessary to facilitate stand-alone operation. Based on results of these tests, we produced a conceptual design for a flight system.
Journal Article

Hybrid-Electric, Heavy-Fuel Propulsion System for Small Unmanned Aircraft

2014-09-16
2014-01-2222
A series hybrid-electric propulsion system has been designed for small rapid-response unmanned aircraft systems (UAS) with the goals of improving endurance, providing flexible and responsive electric propulsion, and enabling heavy fuel usage. The series hybrid architecture used a motor-driven propeller powered by a battery bank, which was recharged by an engine-driven generator, similar to other range-extended electric vehicles. The engine design focused on a custom, two-stroke, lean-burn, compression-ignition (CI), heavy-fuel engine, which was coupled with an integrated starter alternator (ISA) to provide electrical power. The heavy-fuel CI engine was designed for high power density, improved fuel efficiency, and compatibility with heavy fuels (e.g., diesel, JP-5, JP-8). Commercially available gasoline spark-ignition engines and heavy-fuel spark-ignition engines were also considered in the trade study.
Journal Article

Advanced Materials for Aerospace and Space Applications

2014-09-16
2014-01-2233
Constant swirls of innovative ideas are starting to push composites and hybrid metal-composite components for use in an ever expanding circle of products. Recent discoveries of Graphene/Au composites have invigorated innovations for its application to aerospace and space products. Attributes such as a low CTE, stiffness, and light weight attract other manufacturers of smaller products to use composites for enhanced performance and durability. The uses and economics of composites is an enormously broad subject. Examples of composite materials will be described in this paper to provide samples of applications selected for their far reaching potential to enhance product performance. Examples will also be presented to explain the application of carbon based composites where the product performance or application would not be possible without special materials.
Journal Article

Experimental Evaluation of Two Pitot Free Analytical Redundancy Techniques for the Estimation of the Airspeed of an UAV

2014-09-16
2014-01-2163
A measurement device that is extremely important for Unmanned Aerial Vehicle (UAV) guidance and control purposes is the airspeed sensor. As the parameters of feedback control laws are conventionally scheduled as a function of airspeed, an incorrect reading (e.g. due to a sensor fault) of the Pitot-static tube could induce an incorrect feedback control action, potentially leading to the loss of control of the UAV. The objective of this study is to establish the accuracy and reliability of the two airspeed estimation techniques for eventual use as the basis for real-time fault detection of anomalies occurring on the Pitot-static tube sensor. The first approach is based on an Extended Kalman Filter (EKF) and the second approach is based on Least Squares (LS) modeling. The EKF technique utilizes nonlinear kinematic relations between GPS, Inertial Measurement Unit and Air Data System signals and has the advantage of independence from knowledge of the aircraft model.
X