Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Investigation of International Space Station Trace Contaminant Oxidation Catalyst Poisoning

1996-07-01
961517
The Trace Contaminant Control System (TCCS) removes most hazardous contaminants from the space station atmosphere using a carbon bed, but some must be destroyed in a high temperature catalytic oxidizer. While the oxidizer is protected from catalyst poisons by the carbon bed, if contaminant loads are greater than anticipated, the catalyst may be exposed to a variety of poisons. Thus, we studied the effect of halocarbons, sulfides and nitrogen compounds on the catalytic activity and the products produced. We found that even if poisoning occurs, the catalyst will recover, and will not produce toxic partial oxidation products.
Technical Paper

International Space Station Automated Safing Responses to Hazardous Atmosphere

2004-07-19
2004-01-2549
Environmental Control and Life Support (ECLS) system functionality aboard the International Space Station (ISS) includes responding to various emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions to the emergencies. The response to a hazardous atmosphere on board the ISS, including the automatic integrated vehicle response and crew actions, is the focus of this paper. Philosophies regarding the detection of and response to emergencies involving chemical releases are described. Vehicle configuration is discussed for currently supported automatic responses, and crew actions are defined for modules on orbit up to the addition of the Docking Compartment (DC1) in the assembly sequence.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Technical Paper

Process Upsets Involving Trace Contaminant Control Systems

2000-07-10
2000-01-2429
Paradoxically, trace contaminant control systems that suffer unexpected upsets and malfunctions can release hazardous gaseous contaminants into a spacecraft cabin atmosphere causing potentially serious toxicological problems. Trace contaminant control systems designed for spaceflight typically employ a combination of adsorption beds and catalytic oxidation reactors to remove organic and inorganic trace contaminants from the cabin atmosphere. Interestingly, the same design features and attributes which make these systems so effective for purifying a spacecraft’s atmosphere can also make them susceptible to system upsets. Cabin conditions can be contributing causes of phenomena such as adsorbent “rollover” and catalyst poisoning can alter a system’s performance and in some instances release contamination into the cabin. Evidence of these phenomena has been observed both in flight and during ground-based tests.
Technical Paper

A Regenerable Sorbent Bed for Trace Contaminant Removal

1999-07-12
1999-01-2071
The Regenerable Trace Contaminant Control System (RTCCS) is a system designed to meet all of the size, weight, power use, contaminant removal rate, and operational requirements of the International Space Station (ISS) Trace Contaminant Control Subassembly (TCCS) without the need to replace an approximately 80 lb charcoal bed every 90 days. It is designed to remove every class of contaminants found in spacecraft cabin air, including alcohols, aldehydes, aromatics, ethers, esters, chlorocarbons, halocarbons, fluorosilanes, hydrocarbons, ketones, silicones, sulfides, and inorganics, and it is designed to operate continuously with minimal maintenance or periodic replacement major components. The RTCCS is comprised primarily of a pre-sorbent bed, regenerable bed, catalyst bed subassembly, post sorbent bed, blower, and associated valves and instruments.
X