Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Power Management System for the Electric Taxiing System Incorporating the More Electric Architecture

2013-09-17
2013-01-2106
With airlines increasingly directing their attention to operating costs and environmental initiatives, the More Electric Architecture for Aircraft and Propulsion (MEAAP) is emerging as a viable solution for improved performance and eco-friendly aircraft operations. This paper focuses on electric taxiing that does not require the use of jet engines or the auxiliary power unit (APU) during taxiing, either from the departure gate to take-off or from landing to the arrival gate. Many researchers and engineers are considering introducing electric taxiing systems as part of efforts to improve airport conditions. To help cut aircraft emissions at airports, MEAAP seeks to introduce an electric taxiing system that would reduce the duration for which engines and APUs operate while on the ground. Given this goal, the aircraft electrical system deployed for use at airports must rely on a power source other than the jet engines or APU.
Technical Paper

System Design for the More Electric Engine Incorporated in the Electrical Power Management for More Electric Aircraft

2012-10-22
2012-01-2169
This paper describes a study on electrical power management for the More Electric Aircraft (or MEA) and the More Electric Engine (or MEE). This study explored power management solutions based on an integrated engine/power control system and a permanent magnet motor. In recent years, electrical power management has emerged as a key aspect of aircraft system design. In cases in which the Electromechanical Actuator (or EMA) systems are used for flight control, the power bus systems must also be designed to dissipate the power regenerated from flight control systems. In their study, the authors focused on achieving an optimal balance between aircraft power management and operational requirements of the aero-engines. The study results suggest an effective and novel power control concept based on integrated engine control technologies that ensure stable power systems.
X