Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Standard

Oxygen Sensor Technologies

2020-12-18
CURRENT
AIR5933
AIR5933 provides an overview of contemporary technologies (i.e., sensors) that measure the proportion of oxygen in a gas. The use of these sensors in the aerospace environment, with its special constraints, is discussed and papers/reports with detailed information are summarized and referenced. The sensors are divided into expendable and non-expendable sensors. Expendable sensors are based on electrochemical properties, whereas non-expendable sensors rely on paramagnetic, photo-acoustic, electromagnetic, and laser spectroscopy properties.
Standard

Aerospace Information Report for Continuous Flow Oxygen Hose Disconnect Fittings

2009-08-27
HISTORICAL
AIR1358B
This Aerospace Information Report (AIR) indicates those dimensions, deemed critical by the manufacturer to assure proper mating of disconnect hose fittings. The dimensions are critical, but not necessarily complete, in defining these fittings since there are other criteria which must also be met.
Standard

AEROSPACE INFORMATION REPORT FOR CONTINUOUS FLOW OXYGEN HOSE DISCONNECT FITTINGS

1991-09-01
HISTORICAL
AIR1358
This AIR indicates those dimensions, deemed critical by the manufacturer, which are required to be adhered to so that proper mating of the disconnect hose fitting with the correct disconnect be accomplished. The dimensions are critical, but not necessarily complete, in defining these fittings since there are other criteria which must also be met.
Standard

Oxygen Flow Indication

2019-01-10
CURRENT
AS916C
This SAE Aerospace Standard (AS) defines the overall requirements applicable to oxygen flow indication as required by Airworthiness Requirements of CS/FAR 25.1449 to show that oxygen is being delivered to the dispensing equipment. Requirements of this document shall be applicable to any type of oxygen system technology and encompass “traditional” pneumatic devices, as well electric/electronic indication.
Standard

Carry-On Portable Oxygen Concentrators

2017-11-07
CURRENT
AS8059
This SAE Aerospace Standard (AS) applies to a personal, portable oxygen concentrator (POC) to be supplied and used by a passenger requiring supplemental oxygen therapy while traveling on board civil, commercial, or personal aircraft. It covers a POC during both self-powered battery operation and while powered from an aircraft seat’s electrical power through the use of an accessory adapter. The POC is not intended to be connected to the aircraft’s oxygen systems or to be used by any aircraft personnel in any method of treatment or first aid of the general flying public.
Standard

Lubricants for Oxygen Use

2020-07-14
CURRENT
AIR4071A
This SAE Aerospace Information Report (AIR) describes two classes of lubricants which, when properly applied, can be used in oxygen systems and components.
Standard

Lubricants for Oxygen Use

2007-12-05
HISTORICAL
AIR4071
This SAE Aerospace Information Report (AIR) describes two classes of lubricants which, when properly applied, can be used in oxygen systems and components.
Standard

Fuel Versus Oxygen: Evaluations and Considerations

2012-04-12
HISTORICAL
AIR5648
Specific Federal Aviation Regulations (FAR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents a possible solution for the most efficient, safe, and optimum flight continuation.
Standard

Oxygen Cylinder Installation Guide

2019-04-11
CURRENT
ARP5021B
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12.
Standard

Oxygen Cylinder Installation Guide

2016-11-18
HISTORICAL
ARP5021A
This document provides guidance for oxygen cylinder installation on commercial aircraft based on rules and methods practiced in aerospace industry and applicable in other associations. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is focused on requirements regarding DOT approved oxygen cylinders. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, reference should be made to AIR825/12 also.
Standard

Oxygen Cylinder Installation Guide

2005-10-24
HISTORICAL
ARP5021
This document provides guidance for oxygen cylinder installation on commercial aircraft based on rules and methods practiced in aerospace industry and as far as applicable in other associations. It covers considerations to be taken for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is focused on requirements regarding DOT approved oxygen cylinders. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, reference should be made to AIR825/12 also.
Standard

Oxygen System and Component Cleaning

2020-10-19
CURRENT
ARP1176B
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for the cleaning of aircraft oxygen equipment, both metallic and non-metallic articles, such as oxygen lines (tubes, hoses, etc.), components (including regulator and valve parts), cylinders, and ground-based equipment that may be used to support aircraft oxygen systems. This document also specifies work area details, methods for selecting suitable cleaning agents, cleaning methods, and test methods for verifying levels of cleanliness. The cleanliness coding scheme specified in this document provides a method for documenting minimum cleanliness level requirements and for identifying compliance.
Standard

Oxygen System and Component Cleaning and Packaging

2009-11-30
HISTORICAL
ARP1176
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for cleaning aircraft oxygen equipment such as tubing, pieces parts (including regulator and valve parts), cylinders and ground-based equipment that may be used to support aircraft oxygen systems. These methods may apply to gaseous and liquid oxygen equipment. This document specifies work area details, methods to select suitable cleaning chemicals, cleaning methods, test methods to verify cleanliness level, and methods of packaging the components and parts after cleaning. Person designated to clean oxygen equipment should be qualified and trained to clean oxygen equipment. Cleanliness levels achieved are strongly dependent on the capabilities of the persons performing the cleaning operation.
Standard

Oxygen System and Component Cleaning

2018-10-18
HISTORICAL
ARP1176A
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for cleaning aircraft oxygen equipment such as tubing, pieces, parts (including regulator and valve parts), cylinders and ground-based equipment that may be used to support aircraft oxygen systems. This revision introduces a cleanliness coding scheme that can be referenced as a requirement, and/or referenced to identify compliance to meeting such a requirement. These methods may apply to gaseous and liquid oxygen equipment. This document specifies work area details, methods to select suitable cleaning agents, cleaning methods, test methods to verify cleanliness level, and methods of packaging the components and parts after cleaning. Technicians designated to clean oxygen equipment must be qualified and trained to clean oxygen equipment. This ARP is applicable to metallic and non-metallic parts.
X