Refine Your Search

Topic

Author

Search Results

Journal Article

Diesel Emission Control in Review

2009-04-20
2009-01-0121
This summary covers representative developments from 2008 in diesel regulations, engine technology, and NOx, particulate matter (PM), and hydrocarbon (HC) control. Europe is finalizing the Euro VI heavy-duty (HD) regulations for 2013 with the intent of technologically harmonizing with the US. A new particle number standard will be adopted. California is considering tightening the light-duty fleet average to US Tier 2 Bin 2 levels, and CO2 mandates are emerging in Europe for LD, and in the US for all vehicles. LD engine technology is focused on downsizing to deliver lower CO2 emissions, enabled by advances in boost and EGR (exhaust gas recirculation). Emerging concepts are shown for attaining Bin 2 emission levels. HD engines will make deNOx systems optional for even the tightest NOx standards, but deNOx systems enable much lower fuel consumption levels and will likely be used. NOx control is centered on SCR (selective catalytic reduction) for diverse applications.
Journal Article

Diesel Emission Control in Review

2008-04-14
2008-01-0069
This summary covers the developments from 2007 in diesel regulations, engine technology, and NOx and PM control. Regulatory developments are now focused on Europe, where heavy-duty regulations have been proposed for 2013. The regulations are similar in technology needs to US2010. Also, the European Commission proposed the first CO2 emission limits of 130 g/km, which are nearly at parity to the Japanese fuel economy standards. Engines are making very impressive progress, with clean combustion strategies in active development mainly for US light-duty application. Heavy-duty research engines are more focused on traditional approaches, and will provide numerous engine/aftertreatment options for hitting the tight US 2010 regulations. NOx control is centered on SCR (selective catalytic reduction) for diverse applications. Focus is on cold operation and system optimization. LNT (lean NOx traps) durability is quantified, and performance enhanced with a sulfur trap.
Journal Article

Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters

2008-04-14
2008-01-0328
Diesel particulate filters are expected to be used on most passenger car applications designed to meet coming European emission standards, EU5 and EU6. Similar expectations hold for systems designed to meet US Tier 2 Bin 5 standards. Among the various products oxide filter materials, such as cordierite and aluminum titanate, are gaining growing interest due to their unique properties. Besides the intrinsic robustness of the filter products a well designed operating strategy is required for the successful use of filters. The operating strategy is comprised of two elements: the soot estimation and the regeneration strategy. In this paper the second element is discussed in detail by means of theoretical considerations as well as dedicated engine bench experiments. The impact the key operating variables, soot load, exhaust mass flow, oxygen content and temperature, have on the conditions inside the filter are discussed.
Journal Article

Oxide Based Particulate Filters for Light-Duty Diesel Applications - Impact of the Filter Length on the Regeneration and Pressure Drop Behavior

2008-04-14
2008-01-0485
Diesel particulate filters are becoming a standard for most light duty diesel applications designed for European EU5 and EU6 regulations. Oxide based filter materials are continuing to gain significant interest and have been in high volume serial application since 2005. Compared to carbide materials they show some unique properties. With respect to the design, the length of a filter is a key variable. Usually the prime design consideration is the desired filter volume. The diameter or frontal area is then usually defined by packaging constraints. Finally, the length is adapted. The paper provides experimental data on the impact this key design parameter has on the pressure drop and the thermal behavior under “worst case” regeneration conditions. A wide range of soot loads (from 4 g/dm3 to 9 g/dm3) as well as filter lengths from 6″ to 12″ is considered and evaluated under comparable experimental conditions.
Journal Article

Vehicular Emissions in Review

2013-04-08
2013-01-0538
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2012. First, the paper covers the key regulatory developments in the field, including finalized criteria pollutant tightening in California; and in Europe, the development of real-world driving emissions (RDE) standards. The US finalized LD (light-duty) greenhouse gas (GHG) regulation for 2017-25. The paper then gives a brief, high-level overview of key developments in LD and HD engine technology, covering both gasoline and diesel. Marked improvements in engine efficiency are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are just starting to demonstrate 50% brake thermal efficiency. NOx control technologies are then summarized, including SCR (selective catalytic reduction) with ammonia, and hydrocarbon-based approaches.
Technical Paper

The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Components Analysis

2007-10-29
2007-01-4059
In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may alter other specifications. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal Component Analysis (PCA) is used as an adjunct to regression analysis in this work, because of its ability to deal with co-linear variables and potential to uncover ‘hidden’ relationships between the variables.
Technical Paper

Diesel Emission Control in Review

2007-04-16
2007-01-0233
This summary covers the developments from 2006 in diesel regulations, engine combustion, and NOx and PM remediation. Regulatory developments are now focused on Europe, where light-duty Euro 5 and 6 regulations have been proposed for 2009 and 2014, respectively. The regulations are lass stringent than those in the US, but options exist for adopting European vehicles for the US market. Europe is just beginning to look at heavy-duty regulations for 2012 and beyond. Engines are making very impressive progress, with clean combustion strategies in active development mainly for US light-duty application. Heavy-duty research engines are more focused on traditional approaches, and will provide numerous engine/aftertreatment options for hitting the tight US 2010 regulations. NOx control is focusing on SCR (selective catalytic reduction) for diverse applications. Focus is on cold operation, durability, secondary emissions, and system optimization.
Technical Paper

Two-Dimensional Transient Monolith Model for Selective Catalytic Reduction using Vanadia-based Catalyst

2008-01-09
2008-28-0022
In this paper, we report the modeling of the selective catalytic reduction (SCR) of NOx using ammonia on a commercial vanadia-titania based catalyst. The model combines a steady-state two-dimensional channel model with a transient two- or three-dimensional monolith model of the whole catalytic monolith converter. The reaction mechanism includes the standard and fast SCR reactions and also the high-temperature oxidation of ammonia to model the decrease in conversion observed at higher temperatures. We used in-house experimental data spanning a wide range of inlet compositions and temperatures to validate the model. The model was found to be in excellent quantitative agreement with the experimental data.
Technical Paper

Performance of Biodiesel Blends of Different FAME Distributions in HCCI Combustion

2009-04-20
2009-01-1342
As the world market develops for biodiesel fuels, it is likely that a wider variety of biodiesels will become available, both locally and globally, and require engines to operate on a wider variety of fuels than experienced today. At the same time, tighter emissions regulations and a drive for improved fuel economy have focused interest on advanced combustion modes such as HCCI or PCCI, which are known to be more sensitive to fuel properties. This research covers two series of biodiesel fuels. In the first, B20 blends of natural methyl esters derived from palm, coconut, rape, soy, and mustard were evaluated at light load in an HCCI research engine to determine combustion and performance characteristics. These fuels showed performance differences between the biodiesels and the base #2 ULSD fuel, but did not allow separation of chemical effects due to the small number of fuels and correlation of various properties.
Technical Paper

Impacts of B20 Biodiesel on Cordierite Diesel Particulate Filter Performance

2009-11-02
2009-01-2736
Engine laboratory tests were conducted to assess the impact of B20 biodiesel on the performance of cordierite diesel particulate filters (DPFs). Test fuels included 20% soy based methyl ester blended into ultra low sulfur diesel fuel, and two ULSD on-road market fuels. B20 has a higher cetane number, boiling point and oxygen content than typical on-road diesel fuels. A comparative study was performed using a model year 2007 medium duty diesel truck engine. The aftertreatment system included a diesel oxidation catalyst (DOC) followed by a cordierite wall flow DPF. A laboratory-grade supplemental fuel doser was used in the exhaust stream for precise regeneration of the DPF. Tests revealed that the fuel dosing rate was higher and DOC fuel conversion efficiency was poorer for the B20 fuel during low exhaust temperature regenerations. The slip of B20 fuel past the DOC was shown to produce significantly higher exotherms in the DPF during regeneration.
Technical Paper

The Effect of Diesel Fuel Properties on Engine-out Emissions and Fuel Efficiency at Mid-Load Conditions

2009-11-02
2009-01-2697
The influence of various diesel fuel properties on the steady state emissions and performance of a Cummins light-duty (ISB) engine modified for single cylinder operation has been studied at the mid-load “cruise” operating condition. Designed experiments involving independent manipulation of both fuel properties and engine control parameters have been used to build statistical engine response models. The models were then applied to optimize for the minimum fuel consumption subject to specific constraints on emissions and mechanical limits and also to estimate the optimum engine control parameter settings and fuel properties. The study reveals that under the high EGR, diffusion-burn dominated conditions encountered during the experiments, NOx is impacted by cetane number and the distillation characteristics. Lower T50 (mid-distillation temperature) resulted in simultaneous reductions in both NOx and smoke, and higher cetane number provided an additional small NOx benefit.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Diesel Emission Control Technology 2003 in Review

2004-03-08
2004-01-0070
This paper will review the field of diesel emission control with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author reviews general technology approaches for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Regarding NOx control, SCR (selective catalytic reduction) and LNT (lean NOx traps) progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies demonstrate that high-efficiency systems are within reach in all highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

Diesel Engine Exhaust Thermal and Vibration Mapping

2004-03-08
2004-01-0590
The characterization of the thermal and vibration environment of the exhaust systems of three modern day diesel engines, with displacements ranging from 1.9 liter to 12.7 liter, was carried out to support the development of exhaust after treatment components. Tri-axial accelerometer and in pipe thermocouple measurements were recorded at several locations along the exhaust systems during vehicle acceleration and steady driving conditions up to 70 mph. The vehicles were loaded to various gross weight configurations to provide a wide range of engine load conditions. Narrow band and octave band vibration power spectral densities are presented and conclusions are drawn as to the spectral content of the exhaust vibration environment and its distribution along the exhaust system. Temperature time histories during vehicle acceleration runs are likewise presented to indicate expected peak exhaust temperatures.
Technical Paper

An Investigation Into the Effect of a Diesel/Water Emulsion on the Size and Number Distribution of the Particulate Emissions from a Heavy-Duty Diesel Engine

2003-10-27
2003-01-3168
The current test programmes have measured emissions from a heavy-duty bus engine installed on a test bench and also on a chassis dynamometer whilst running on a Diesel/water emulsion fuel. Testing was carried out over both steady state and transient test cycles. Emissions were also measured on the test bed from the engine fitted with both a Diesel particulate filter and an oxidation catalyst. Alongside the measurement of the regulated emissions, particle number distributions (by size) and total particle counts were also measured. Size selected particle counts were made over the transient tests and are compared between engine test and chassis dynamometer. This paper demonstrates the influence of the emulsion on the particle size distribution, the effects of after-treatment and lubricant on the particle size emissions of an engine running on an emulsion and also the influence of sampling conditions on the measurements recorded.
Technical Paper

The Effect of Sulphur-Free Diesel Fuel on the Measurement of the Number and Size Distribution of Particles Emitted from a Heavy-Duty Diesel Engine Equipped with a Catalysed Particulate Filter

2003-10-27
2003-01-3167
Following concern about the association between adverse health effects and ambient particulate concentrations, there are now an increasing number of heavy-duty Diesel engines fitted with catalysed particulate filters. These filters virtually eliminate carbon particle emissions but there is some evidence suggesting a potential to form a cloud of secondary nucleation particles post trap. This event occurs at high temperature operating conditions and is produced mainly from the increased sulphate production over the catalyst. This paper investigates the measurement of particle emissions from a heavy-duty engine operating over the European legislated cycle, both with and without a filter fitted and investigates how emissions are affected by the use of a sulphur-free Diesel fuel. The work also demonstrates a contribution to the measured nucleation particles from material desorbed not only from the trap, but also from the exhaust system.
Technical Paper

New Catalyzed Cordierite Diesel Particulate Filters for Heavy Duty Engine Applications

2003-10-27
2003-01-3166
A family of cordierite DPF filters were developed and studied for their efficacy for catalyzed soot filter applications. In addition to porosity and median pore size of DPF filters, breadth of pore size distribution, microstructure, and pore connectivity have a profound influence not only in filter performance (pressure drop, catalyst coatability, and filtration efficiency) but also on mechanical and physical properties. Through filter material composition development, optimum values for the %porosity, median pore diameter, and breadth of the pore size distribution for minimizing pressure drop have been identified, leading to the development of a new family of high-porosity cordierite diesel particulate filters that possess a unique combination of high filtration efficiency, high strength, and very low clean and soot-loaded pressure drop in both the catalyzed and non-catalyzed states. By controlling the microstructure, the impact of the catalyst on pressure drop has been minimized.
Technical Paper

Diesel Particulate Filter Operational Characterization

2004-03-08
2004-01-0958
Wall-flow filter technology has been used for many years to remove particulate emissions from a select number of diesel engine exhaust systems. Significant implementation of diesel particulate filters will require the definition of regeneration strategies that permit the filters to be regularly and durably purged of accumulated non-volatile particulates. This paper will examine the laboratory-bench characterization of filter responses to the wide variety of input conditions to which they may be exposed in practice. The lab-bench filter characterization will be done as a function of generic independent variables such as flow rate, inlet temperature, oxygen content and soot loading. The testing will be conducted on uncatalyzed filters for this preliminary study. The characterization approach will examine such dependent variables as completeness of regeneration and maximum exotherm temperatures.
Technical Paper

Comparative Analysis of Different Heavy Duty Diesel Oxidation Catalysts Configurations

2004-03-08
2004-01-1419
Diesel Oxidation Catalyst in conjunction with large frontal area substrates is a key element in HDV Diesel emission control systems. This paper describes and reviews tests on a set of various Diesel Oxidation Catalyst configurations (for example cell densities), all with the same catalyst coating. The Diesel Oxidation Catalyst specimens were subjected to the European Stationary Cycle (ESC), the European Transient Cycle (ETC), and the US heavy duty Federal Test Procedure (US FTP). The focus was to study relative emissions, pressure drop, and light-off performance. All tests were conducted using the same Detroit Diesel Series 60 engine operating on ultra low sulfur diesel fuel. In addition to this, the exhaust was regulated so that the backpressure on the engine, upstream of the catalyst was also the same for all catalysts.
Technical Paper

Diesel SCR NOx Reduction and Performance on Washcoated SCR Catalysts

2004-03-08
2004-01-1293
This paper describes a study of ternary V2O5/WO3/TiO2 SCR catalysts coated on standard Celcor® and new highly porous cordierite substrates. At temperatures below 275°C, where NOx conversion is kinetically limited, high catalyst loadings are required to achieve high conversion efficiencies. In principle there are two ways to achieve high catalyst loadings: 1. On standard Celcor® substrates the washcoat thickness can be increased. 2. With new highly porous substrates a high amount of washcoat can be deposited in the walls. Various catalyst loadings varying from 120g/l to 540 g/l were washcoated on both standard Celcor® and new high porosity cordierite substrates with standard coating techniques. Simulated laboratory testing of these samples showed that high catalyst loadings improved both low temperature conversion efficiency and high temperature ammonia storage capacity and consequently increased the overall conversion efficiency.
X