Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

2010-04-12
2010-01-0591
Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

New CNG Concepts for Passenger Cars: High Torque Engines with Superior Fuel Consumption

2003-06-23
2003-01-2264
Since the CO2 emissions of passenger car traffic and their greenhouse potential are in the public interest, natural gas (CNG) is discussed as an attractive alternative fuel. The engine concepts that have been applied to date are mainly based upon common gasoline engine technology. In addition, in mono-fuel applications, it is made use of an increased compression ratio -thanks to the RON (Research Octane Number) potential of CNG-, which allows for thermodynamic benefits. This paper presents advanced engine concepts that make further use of the potentials linked to CNG. Above all, the improved knock tolerance, which can be particularly utilized in turbocharged engine concepts. For bi-fuel (CNG/gasoline) power trains, the realization of variable compression ratio is of special interest. Moreover, lean burn technology is a perfect match for CNG engines. Fuel economy and emission level are evaluated basing on test bench and vehicle investigations.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

2004-03-08
2004-01-0994
The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Technical Paper

LOTUS: A Co-operation for Low Temperature Urea-Based Selective Catalytic Reduction of NOx

2004-03-08
2004-01-1294
The European research co-operation Lotus is presented. The main objectives of the project were i) to show the potential for a urea-based SCR system to comply with the EU standard of years 2005 and 2008 for heavy-duty Diesel engines for different driving conditions with optimal fuel consumption, ii) to reach 95 % conversion of NOx at steady state at full load on a Euro III engine, iii) to reach 75 % NOx reduction for exhaust temperatures between 200-300°C, and 85 % average NOx reduction between 200-500°C. The energy content of the consumed urea should not exceed 1.0 %, calculated as specific fuel consumption. These targets were met in May 2003 and the Lotus SCR system fulfilled the Euro V NOx legislative objectives for year 2008.
Technical Paper

Vehicle Application of a 4-Cylinder Tumble DISI Engine

2001-03-05
2001-01-0735
SI engines with gasoline direct injection are currently the focus of development for almost all car manufacturers. After the introduction of DISI engines, first to the Japanese market and after a short time delay also in Europe, a broad variety of technical solutions for efficient stratified concepts can be stated. The targets of the development activities in this field are defined by legislation and customer's demands. The potential reduction of fuel consumption with stratified operation has to be combined with a further improvement of the full load potential of the DISI engine. A substantial part of the development activities are the fulfillment of current and future emission standards. Therefore, in order to realize a highly efficient lean operation, new technologies and strategies in the field of exhaust gas aftertreatment and vehicle application are required.
Technical Paper

Oil Aeration in Combustion Engines - Analysis and Optimization

2001-03-05
2001-01-1074
Like all technical fluids, lubricants are able to solve gases. While solved gas is a neutral part of the lubricant, dissolved gas has an influence especially on the compressibility behavior. The effects of oil aeration on engine drive causes malfunctions of several components. A successful optimization of the oil circulation concerning the oil aeration presupposes a safe and reproducible measuring procedure. The FEV has developed a measurement apparatus according to the principle of the volume measurement which allows a simple but efficient oil aeration measurement.
Technical Paper

Low Emission Concept for SULEV

2001-03-05
2001-01-1313
Today, SULEV legislation represents the most stringent emission standard for vehicles with combustion engines, and it will be introduced starting by Model Year 2003. In order to meet such standards, even higher effort is required for the development of the exhaust gas emission concept of SI engines. Beyond a facelift of the combustion system, exhaust gas aftertreatment, and the engine management system, new approaches are striven for. The principle keys are well known: low HC feed gas, high thermal load for quick light-off, exhaust system with low heat capacity and highly effective exhaust gas aftertreatment.
Technical Paper

Modeling of Exhaust Valve Opening in a Camless Engine

2002-03-04
2002-01-0376
Electromechanical valve trains in camless engines enable virtually fully variable valve timing that offers large potential for both part load fuel economy and high low end torque. Based upon the principle of a spring-mass-oscillator, the actuator stores the energy to open and close the valves in springs. However, the motion of the valves and the electromechanical actuation suffers from parasitic losses, such as friction and ohmic resistance. Besides eddy current losses, gas forces obviously play a further important role in the control of exhaust valve opening especially at high engine speeds and loads. Based on engine test bench data, computational simulations (3D CFD, gas exchange process and electromechanical system) are carried out to analyze the effects of exhaust valve gas forces on the dynamic motion of valve and actuator. The modeling approach and results of this investigation are discussed in this paper.
Technical Paper

Synergies of Variable Valve Actuation and Direct Injection

2002-03-04
2002-01-0706
The main goal in the development of new automobile SI engines is to significantly reduce fuel consumption. To this end both, variable valve actuation and direct gasoline injection, are being pursued as new engine concepts. Both approaches appear to offer approximately the same potential to reduce fuel consumption. The development so far is creating the impression of two competing technical concepts with no obvious way to combine them [1]. The two engine concepts, however, can be combined, although it is often objected that their combination would only yield marginal additional potential. That is true to the extent that the advantages of dethrottling offered by both of the concepts can only be counted once in terms of overall potential. But there is a number of additional effects to be taken into account. This Paper represents an analysis of the individual potential of the two approaches as well as an estimation of their combined potential.
Technical Paper

Variable Compression Ratio - A Design Solution for Fuel Economy Concepts

2002-03-04
2002-01-1103
The challenge to reduce fuel consumption in S.I. engines is leading to the application of new series production technologies: including direct injection and, recently, the variable valve train, both aiming at unthrottled engine operation. In addition to these technologies, turbo- or mechanical supercharging is of increasing interest because, in principle, it offers a significant potential for improved fuel economy. However, a fixed compression ratio normally leads to a compromise, in that the charged engine is more of a performance enhancement than an improver of fuel economy. Fuel efficient downsizing concepts can be realized through the application of variable compression ratio. In this paper, a variable compression ratio design solution featuring eccentric movement of the crankshaft is described. Special attention is given to the integration of this solution into the base engine.
Technical Paper

Start-Up Behavior of Fuel Processors for PEM Fuel Cell Applications

2003-03-03
2003-01-0420
This paper focuses on start-up technology for fuel processing systems with special emphasis on gasoline fueled burners. Initially two different fuel processing systems, an autothermal reformer with preferential oxidation and a steam reformer with membrane, are introduced and their possible starting strategies are discussed. Energy consumption for preheating up to light-off temperature and the start-up time is estimated. Subsequently electrical preheating is compared with start-up burners and the different types of heat generation are rated with respect to the requirements on start-up systems. Preheating power for fuel cell propulsion systems necessarily reaches up to the magnitude of the electrical fuel cell power output. A gasoline fueled burner with thermal combustion has been build-up, which covers the required preheating power.
Technical Paper

Sound Quality and Engine Performance Development Utilizing Air-to-Air Simulation and Interior Noise Synthesis

2003-05-05
2003-01-1652
The sound quality and performance of an automotive engine are both significantly influenced by the “air-to-air” system, i.e., the intake system, the exhaust system, and the engine gas dynamics. Only a full systems approach can result in an optimized air-to-air system, which fulfills engine performance requirements, overall sound pressure level targets for airborne vehicle noise, as well as sound quality demands. This paper describes an approach, which considers the intake system, engine, and exhaust system within one CAE model that can be utilized for engine performance calculations as well as acoustic simulations. Examples comparing simulated and measured sound are discussed. Finally, the simulated sound (e.g., at the tailpipe of the exhaust system) is combined with an interior noise simulation technique to evaluate its influence inside the vehicle's interior.
X