Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Journal Article

Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling

2011-04-12
2011-01-0101
The Michelin Tweel tire structure has recently been developed as an innovative non-pneumatic tire which has potential for improved handling, grip, comfort, low energy loss when impacting obstacles and reduced rolling resistance when compared to a traditional pneumatic tire. One of the potential sources of vibration during rolling of a non-pneumatic tire is the buckling phenomenon and snapping back of the spokes in tension when they enter and exit the contact zone. Another source of noise was hypothesized due to a flower petal ring vibration effect due to discrete spoke interaction with the ring and contact with the ground during rolling as the spokes cycle between tension and compression. Transmission of vibration between the ground force, ring and spokes to the hub was also considered to be a significant contributor to vibration and noise characteristics of the Tweel.
Journal Article

Truck Utility & Functionality in the GM 2-Mode Hybrid

2010-04-12
2010-01-0826
The present production General Motors 2-Mode Hybrid system for full-size SUVs and pickup trucks integrates truck utility functions with a full hybrid system. The 2-mode hybrid system incorporates two electro-mechanical power-split operating modes with four fixed-gear ratios. The combination provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. The combination of two power-split modes reduces the amount of mechanical power that is converted to electric power for continuously variable transmission operation, meeting the utility required for SUVs and trucks. This paper describes how fuel economy functionality was blended with full-size truck utility functions. Truck functions described include: Manual Range Select, Cruise Control, 4WD-Low and continuous high load operation.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Journal Article

Design and Modeling of a Novel Internal Combustion Engine with Direct Hydraulic Power Take-off

2013-04-08
2013-01-1733
This paper introduces a Hydraulic Linear Engine (HLE) concept and describes a model to simulate instantaneous engine behavior. The United States Environmental Protection Agency has developed an HLE prototype as an evolution of their previous six-cylinder, four-stroke, free-piston engine (FPE) hardware. The HLE design extracts work hydraulically, in a fashion identical to the initial FPE, and is intended for use in a series hydraulic hybrid vehicle. Unlike the FPE, however, the HLE utilizes a crank for improved timing control and increased robustness. Preliminary experimental results show significant speed fluctuations and cylinder imbalance that require careful controls design. This paper also introduces a model of the HLE that exhibits similar behavior, making it an indispensible tool for controls design. Further, the model's behavior is evaluated over a range of operating conditions currently unobtainable by the experimental setup.
Journal Article

Research on Vibration Isolation of Semi-Active Controlled Hydraulic Engine Mount with Air Spring

2014-04-01
2014-01-0008
Aiming at the abnormal vibration of driver seat of a passenger car in idle condition, vibration acceleration of engine, frame and seat rail was tested to identify vibration sources. Order tracking and spectrogram analysis indicated that the second order self-excitation of engine was the main cause. To solve the problem, semi-active controlled hydraulic engine mount with air spring of which characteristics could shift between a high dynamic stiffness and a low one was applied. Then the structure and principle of the mount with variable characteristics was introduced and control mode was analyzed. Dynamic characteristics were obtained by bench test. With sample mount applied, vibration of seat rail was tested again in multiple vehicle and engine working conditions. Dates showed that abnormal vibration in idle condition was extremely reduced and the mount could also meet the requirement of engine to dynamic stiffness in driving conditions.
Journal Article

Modeling and Simulation of a Series Hybrid CNG Vehicle

2014-04-01
2014-01-1802
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset.
Journal Article

Vehicle Interior Sound Quality Analysis by Using Grey Relational Analysis

2014-04-01
2014-01-1976
In this paper, the relationship was investigated between objective psychoacoustic parameters, A-weighted sound pressure level (SPL) and the results of the subjective evaluation by using grey relational analysis (GRA). The sounds were recorded with eight different passenger cars at four different running conditions. The sound quality indices were calculated, including loudness, sharpness, roughness, fluctuation, and A-weighted SPL. Subjective evaluation was performed by thirty subjects using rating scale method. GRA was compared with traditional correlation analysis, and the comparison shows that some hidden information which could not be found in the traditional correlation analysis was revealed. In order to know the further relationship between fluctuation and subjective evaluation, another subjective evaluation was performed by the same 30 subjects. The result demonstrates that the relationship revealed from GRA is correct.
Journal Article

Prediction of the Sound Absorption Performance of Polymer Wool by Using Artificial Neural Networks Model

2014-04-01
2014-01-0889
This paper proposes a new method of predicting the sound absorption performance of polymer wool using artificial neural networks (ANN) model. Some important parameters of the proposed model have been adjusted to best fit the non-linear relationship between the input data and output data. What's more, the commonly used multiple non-linear regression model is built to compare with ANN model in this study. Measurements of the sound absorption coefficient of polymer wool based on transfer function method are also performed to determine the sound absorption performance according to GB/T18696. 2-2002 and ISO10534- 2: 1998 (E) standards. It is founded that predictions of the new model are in good agreement with the experiment results.
Journal Article

Engineered Surface Features for Brake Discs to Improve Performance in Fade Conditions

2013-09-30
2013-01-2039
Driving on the race track is an especially grueling situation for the automotive brake system. Temperatures can exceed the phase transition temperature of the disc material, wear rates of friction material can be orders of magnitude higher than during street use, and hydraulic pressures and mechanical stresses on components can approach their design limits. It is a given that friction material under these conditions will wear unevenly - causing taper and cupping wear - and an associated set of performance degradations will occur, including an increase in fluid consumption (pedal travel increase) and loss of mechanical efficiency (pedal force increase).
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Journal Article

Fatigue Life Estimation of Front Subframe of a Passenger Car Based on Modal Stress Recovery Method

2015-04-14
2015-01-0547
In this paper, the dynamic stress of the front subframe of a passenger car was obtained using modal stress recovery method to estimate the fatigue life. A finite element model of the subframe was created and its accuracy was checked by modal test in a free hanging state. Furthermore, the whole vehicle rigid-flexible coupling model of the passenger car was built up while taking into account the flexibility of the subframe. Meanwhile, the road test data was used to verify the validity of the dynamic model. On this basis, the modal displacement time histories of the subframe were calculated by a dynamic simulation on virtual proving ground consisting of Belgian blocks, cobblestone road and washboard road. By combining the modal displacement time histories with modal stress tensors getting from normal mode analysis, the dynamic stress time histories of the subframe were obtained through modal stress recovery method.
Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Technical Paper

Research on High-efficiency Test Method of Vehicle AEB based on High-precision Detection of Radar Turntable Encoder

2021-10-11
2021-01-1273
With the increasingly complex traffic environment, the vehicle AEB system needs to go through a large number of testing processes, in order to drive more safely on the road. For speeding up the development process of AEB and solve the problems of long cycle, high cost and low efficiency in AEB testing, in this paper, a millimeter wave radar turntable is built, and a high-precision detection algorithm of turntable encoder is designed, at the same time, a test method of vehicle AEB based on the detection data of radar turntable encoder is designed. The verification results show that methods described in this paper can be used to develop the vehicle AEB test algorithm efficiently.
Technical Paper

Neural Network Design of Control-Oriented Autoignition Model for Spark Assisted Compression Ignition Engines

2021-09-05
2021-24-0030
Substantial fuel economy improvements for light-duty automotive engines demand novel combustion strategies. Low temperature combustion (LTC) demonstrates potential for significant fuel efficiency improvement; however, control complexity is an impediment for real-world transient operation. Spark-assisted compression ignition (SACI) is an LTC strategy that applies a deflagration flame to generate sufficient energy to trigger autoignition in the remaining charge. Operating a practical engine with SACI combustion is a key modeling and control challenge. Current models are not sufficient for control-oriented work such as calibration optimization, transient control strategy development, and real-time control. This work describes the process and results of developing a fast-running control-oriented model for the autoignition phase of SACI combustion. A data-driven model is selected, specifically artificial neural networks (ANNs).
Technical Paper

Comparison of the Particulate Matter Index and Particulate Evaluation Index Numbers Calculated by Detailed Hydrocarbon Analysis by Gas Chromatography (Enhanced ASTM D6730) and Vacuum Ultraviolet Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Analysis (ASTM D8071)

2021-08-16
2021-01-5070
The Particulate Matter Index (PMI) is a tool that provides an indication of a fuel’s tendency to produce Particulate Matter (PM) emissions. Currently, the index is being used by various fuel laboratories and the Automotive OEMs as a tool to understand the gasoline fuel’s impact on both PM from engine hardware and vehicle-out emissions. In addition, a newer index that could be used to give an indication of the PM tendency of the gasoline range fuels, called the Particulate Evaluation Index (PEI), is shown to have a good correlation to PMI. The data used in those indices are collected from chemical analytical methods. This paper will compare gas chromatography (GC) methods used by three laboratories and discuss how the different techniques may affect the PMI and PEI calculation.
Technical Paper

Short-Term Vehicle Speed Prediction Based on Back Propagation Neural Network

2021-08-10
2021-01-5081
In the face of energy and environmental problems, how to improve the economy of fuel cell vehicles (FCV) effectively and develop intelligent algorithms with higher hydrogen-saving potential are the focus and difficulties of current research. Based on the Toyota Mirai FCV, this paper focuses on the short-term speed prediction algorithm based on the back propagation neural network (BP-NN) and carries out the research on the short-term speed prediction algorithm based on BP-NN. The definition of NN and the basic structure of the neural model are introduced briefly, and the training process of BP-NN is expounded in detail through formula derivation. On this basis, the speed prediction model based on BP-NN is proposed. After that, the parameters of the vehicle speed prediction model, the characteristic parameters of the working condition, and the input and output neurons are selected to determine the topology of the vehicle speed prediction model.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Driver Drowsiness Behavior Detection and Analysis Using Vision-Based Multimodal Features for Driving Safety

2020-04-14
2020-01-1211
Driving inattention caused by drowsiness has been a significant reason for vehicle crash accidents, and there is a critical need to augment driving safety by monitoring driver drowsiness behaviors. For real-time drowsy driving awareness, we propose a vision-based driver drowsiness monitoring system (DDMS) for driver drowsiness behavior recognition and analysis. First, an infrared camera is deployed in-vehicle to capture the driver’s facial and head information in naturalistic driving scenarios, in which the driver may or may not wear glasses or sunglasses. Second, we propose and design a multi-modal features representation approach based on facial landmarks, and head pose which is retrieved in a convolutional neural network (CNN) regression model. Finally, an extreme learning machine (ELM) model is proposed to fuse the facial landmark, recognition model and pose orientation for drowsiness detection. The DDMS gives promptly warning to the driver once a drowsiness event is detected.
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
X