Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Evaluation of CarFit® Criteria Compliance and Knowledge of Seat Adjustment

2018-04-03
2018-01-1314
Improper fit in a vehicle will affect a driver’s ability to reach the steering wheel and pedals, view the roadway and instrument gauges, and allow vehicle safety features to protect the driver during a crash. CarFit® is a community outreach program to educate older drivers on proper “fit” within their personal vehicle. A subset of measurements from CarFit® were used to quantify the “fit” of 97 older drivers over 60 and 20 younger drivers, ages 30-39, in their personal vehicles. Binary, logistic regression was used to assess the likelihood of drivers meeting the CarFit® measurement criteria prior to and after CarFit® education. The results showed older drivers were five times more likely than younger drivers to meet the CarFit® criteria for line of sight above the steering wheel, suggesting that younger drivers would also benefit from CarFit® education.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Technical Paper

Assessing Biofidelity of the Test Device for Human Occupant Restraint (THOR) Against Historic Human Volunteer Data

2013-11-11
2013-22-0018
The National Aeronautics and Space Administration (NASA) is interested in characterizing the responses of THOR (test device for human occupant restraint) anthropometric test device (ATD) to representative loading acceleration pulse s. Test conditions were selected both for their applicability to anticipated NASA landing scenarios, and for comparison to human volunteer data previously collected by the United States Air Force (USAF). THOR impact testing was conducted in the fore-to-aft frontal (-x) and in the upward spinal (-z) directions with peak sled accelerations ranging from 8 to 12 G and rise times of 40, 70, and 100ms. Each test condition was paired with historical huma n data sets under similar test conditions that were also conducted on the Horizontal Impulse Accelerator (HIA). A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software.
X