Refine Your Search

Topic

Author

Search Results

Journal Article

Understanding of the Internal Crack Phenomenon inside Diesel Particulate Filter during Regeneration Part 1: Modeling and Experiments

2010-05-05
2010-01-1555
This study deals with a coupled experimental and modeling approach of Diesel Particulate Filter cracking. A coupled model (heat transfer, mass transfer, chemical reactions) is used to predict the temperature field inside the filter during the regeneration steps. This model consists of assembled 1D models and is calibrated using a set of laboratory bench tests. In this set of experiments, laboratory scale filters are tested in different conditions (variation of the oxygen rate and gas flow) and axial/radial thermal gradient are recorded with the use of thermocouples. This model is used to build a second set of laboratory bench tests, which is dedicated to the understanding of the phenomena of Diesel Particulate Filter cracking.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Journal Article

Control-Oriented Modeling of a LNT-SCR Diesel After-Treatment Architecture

2011-04-12
2011-01-1307
Lean NOx trap (LNT) and Selective Catalytic Reduction catalysts (SCR) are two leading candidates for diesel NOx after-treatment. Each technology exhibits good properties to reduce efficiently diesel NOx emissions in order to match the forthcoming EURO 6 standards. NOx reduction in LNT is made through a two-step process. In normal (lean) mode, diesel engine exhausts NOx is stored into the NOx trap; then when necessary the engine runs rich during limited time to treat the stored NOx. This operating mode has the benefit of using onboard fuel as NOx reducer. But NOx trap solution is restrained by limited active temperature windows. On the other hand, NH₃-SCR catalysts operate in a wider range of temperature and do not contain precious metals. However, NH₃-SCR systems traditionally use urea-water solution as reducing agent, requiring thus additional infrastructure to supply the vehicles with enough reducer. These pros and cons are quite restrictive in classical LNT or NH₃-SCR architecture.
Technical Paper

A Study of the Effects of 30% Biodiesel Fuel on Soot Loading and Regeneration of a Catalytic DPF

2007-07-23
2007-01-2023
Biofuels are a renewable energy source. When used as extenders for transportation fuels, biofuels contribute to the global reduction of Green House Gas and CO2 emissions from the transport sector and to security and independence of energy supply. On a “Well to Wheel” basis they are much more CO2 efficient than conventional fossil fuels. All vehicles currently in circulation in Europe are capable of using 5 % biodiesel. The introduction of higher percentages biodiesel needs new specific standards and vehicle tests validation. The development of vehicles compatible with 30% biodiesel blends in diesel fuel includes the validation of each part of both engine and fuel vehicle systems to guarantee normal operation for the entire life of the vehicle.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Energy Management of a High Efficiency Hybrid Electric Automatic Transmission

2010-04-12
2010-01-1311
The energy management of a hybrid vehicle defines the vehicle power flow that minimizes fuel consumption and exhaust emissions. In a combined hybrid the complex architecture requires a multi-input control from the energy management. A classic optimal control obtained with dynamic programming shows that thanks to the high efficiency hybrid electric variable transmission, energy losses come mainly from the internal combustion engine. This paper therefore proposes a sub-optimal control based on the maximization of the engine efficiency that avoids multi-input control. This strategy achieves two aims: enhanced performances in terms of fuel economy and a reduction of computational time.
Technical Paper

Fuel Additive Performance Evaluation for Volume Production Application of a Diesel Particulate Filter

2001-03-05
2001-01-1286
Diesel particulate filter (DPF) technology is becoming increasingly established as a practical method for control of particulate emissions from diesel engines. In the year 2000, production vehicles with DPF systems, using metallic fuel additive to assist regeneration, became available in Europe. These early examples of first generation DPF technology are forerunners of more advanced systems likely to be needed by many light-duty vehicles to meet Euro IV emissions legislation scheduled for 2005. Aspects requiring attention in second generation DPF systems are a compromise between regeneration kinetics and ash accumulation. The DPF regeneration event is activated by fuel injection, either late in the combustion cycle (late injection), or after normal combustion (post injection), leading to increased fuel consumption. Therefore for optimum fuel economy, the duration of regeneration and/or the soot ignition temperature must be minimised.
Technical Paper

Impact of Gasoline RON and MON on a Turbocharged MPI SI Engine Performances

2004-06-08
2004-01-2001
This paper presents a combustion study of gasoline anti-knock quality effects on turbocharged MPI SI engine performances. A comparative analysis between many fuels covering various Research Octane Number (RON), Motor Octane Number (MON) and sensitivity (RON-MON) is described. The study was conducted on steady state test bench, using a four cylinder 2 L engine. In turbocharged gasoline engines, knock resistance is more than ever a crucial issue to achieve high performance and good customer's consumption level. Octane level is therefore a fuel key parameter. Considering thermodynamic aspects of such combustion at full load, performances, fuel consumption and engine thermal strains are evaluated for each tested fuel. An important influence of RON at iso sensitivity was observed. Because of the extreme conditions met on turbocharged gasoline engine, the impact of RON is exacerbated on such engine and illustrates the great benefits of an increase RON fuel.
Technical Paper

Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation

2016-04-05
2016-01-1034
Engine downsizing is potentially one of the most effective strategies being explored to improve fuel economy. A main problem of downsizing using a turbocharger is the small range of stable functioning of the turbocharger centrifugal compressor at high boost pressures, and hence the measurement of the performance maps of both compressor and turbine. Automotive manufacturers use mainly numerical simulations for internal combustion engines simulations, hence the need of an accurate extrapolation model to get a complete turbine performance map. These complete maps are then used for internal combustion engines calibration. Automotive manufacturers use commercial softwares to extrapolate the turbine narrow performance maps, both mass flow characteristics and the efficiency curve.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Technical Paper

System Approach for NOx Reduction: Double LNT Diesel After-Treatment Architecture

2011-04-12
2011-01-1300
This paper presents an after-treatment architecture combining a close coupled NOx trap and an under floor NOx trap. Instead of simply increasing the volume of the catalyst, we propose to broaden the active temperature window by splitting the LNT along the exhaust line. In order to design this architecture, a complete 1D model of NOx trap has been developed. Validated with respect to experimental data, this model has been useful to define the two volumes of LNT, making significant savings on the test bench exploitation. However, one of the main difficulties to operate the proposed architecture is the NOx purge and sulfur poisoning management. In order to optimize the NOx and sulfur purge launches, we have developed a control strategy based on an embedded reduced LNT model. These strategies have been validated on different driving cycles, by the means of simulation and of vehicle tests using rapid prototyping tools.
Technical Paper

Air System Conception for a Downsized Two-Stroke Diesel Engine

2012-04-16
2012-01-0831
This paper introduces a research work on the air loop system for a downsized two-stroke two-cylinder diesel engine conducted in framework of the European project dealing with the POWERtrain for Future Light-duty vehicles - POWERFUL. The main objective was to determine requirements on the air management including the engine intake and exhaust system, boosting devices and the EGR system and to select the best possible technical solution. With respect to the power target of 45 kW and scavenging demands of the two-cylinder two-stroke engine with a displacement of 0.73 l, a two-stage boosting architecture was required. Further, to allow engine scavenging at any operation, supercharger had to be integrated in the air loop. Various air loop system layouts and concepts were assessed based on the 1-D steady state simulation at full and part load with respect to the fuel consumption.
Technical Paper

Light Weight Engine Construction through Extended and Sustainable Use of Mg-Alloys

2006-04-03
2006-01-0068
Eight partners from Europe and one from North America have joined efforts in a EU-supported project to find new ways for sustainable production of Mg-based engine blocks for cars. The ultimate aim of the work is to reduce vehicle weight, thereby reducing fuel consumption and CO2 emissions from operation of the vehicle. Four new magnesium alloys are considered in the project and an engine block has been series cast - 20 each in two alloys. An extensive mechanical testing program has been initiated to identify in particular the high temperature limits of the four alloys and a significant experimental study of proper bolt materials for joining is being done in parallel. Engine redesign and life cycle analysis has also been completed to secure the future sustainable exploitation of the project results. This paper presents an overview of the work and results obtained until now - 3 months before the ending date of the project.
Technical Paper

Effect of Flow Distribution on Emissions Performance of Catalytic Converters

1998-02-23
980936
The emissions performance of catalytic converters under different conditions of flow distribution was investigated. Computational Fluid Dynamics methods were utilised to model the maldistribution effects of different inlet cones. The effects of maldistribution on ageing, light-off and conversion were investigated using steady state tests on an engine bench. Emission testing was also conducted on a vehicle throughout ECE and EUDC test cycles. Maldistribution was found to have a significant effect on the efficiency of the catalyst during the early stages of the ECE cycle for both fresh and aged catalysts. The effects were less significant over later stages of the ECE cycle and throughout the EUDC except NOx where maldistribution did have an effect on the conversion at higher flow rates during the later stages of the test.
Technical Paper

Repeatability of Fine Particle Measurement of Diesel and Gasoline Vehicles Exhaust Gas

2004-06-08
2004-01-1983
Four Diesel vehicles and two gasoline ones are used to determine the repeatability of the particle number and size measurements. Two analytical techniques are used: Scanning Mobility Particle Sizer (SMPS) and Electrical Low Pressure Impactor (ELPI). The influence of technology (Euro2 and Euro3, Diesel and gasoline vehicles, Diesel Particulate Filter (DPF), Gasoline Direct Injection (GDI)) and speed on the particle number and size is presented in the case of steady speeds and the European Driving Cycle (EDC). The repeatability of these measurements is determined at the entire particle distribution. The global 1.96*Standard Deviation (SD) of the median diameter, determined by SMPS, is 8 nm. The median diameter is difficult to be determined in several cases due to the flat profiles of the emitted particles. The global 1.96*Relative Standard Deviation (RSD) of the particle number presents a U-like curve, with a minimum value (55-57%) at about 100 nm.
Technical Paper

Comparison between the exhaust particles mass determined by the European regulatory gravimetric method and the mass estimated by ELPI

2005-05-11
2005-01-2147
Electrical Low Pressure Impactor (ELPI) is often employed to measure the particle number and size distribution of internal combustion engines exhaust gas. If appropriate values of particle density are available, the particle mass can be estimated by this method. Exhaust particles of three Euro3 passenger cars (one gasoline operating under stoichiometric conditions, one Diesel and one Diesel equipped with Diesel Particulate Filter) are measured using the current European regulations (gravimetric method on the are New European Driving Cycle) and estimated by ELPI particle number and size distribution. Different values for particle density are used to estimate the particle mass using all ELPI stages or only some of them. The results show that the particle mass estimated by ELPI is well correlated with the mass determined by filters for PM emissions higher than 0.025 g/km. This correlation is not very good at lower emissions.
Technical Paper

Experimental Analysis of the Influence of Exhaust Manifold Junction Geometry on its Fluid-Dynamic Behavior

2000-03-06
2000-01-0914
The purpose of this paper is to present the results of a study on the exhaust junctions geometry. Twelve three-branch junctions of different geometry have been tested on a single cylinder engine. The parameters studied have been exhaust junction outlet-to-inlet diameter ratio, length, angle between inlet branches and the existence of a reed separating inlet branches. An analysis of the pressure waves amplitude (incident, reflected and transmitted) obtained from instantaneous pressure measurements in some locations around the junction has been carried out. The analysis of results shows that junction length has a low influence on its behavior. The ratio between inlet and outlet branches diameters increases both reflection and directionality (avoiding pressure wave transmission to the adjacent branch). The existence of a reed separating the inlet flows may increase directionality with moderate pressure losses if the throat area is not reduced.
Technical Paper

Maximum Electrical Energy Availability With Reasonable Components

2000-11-01
2000-01-C071
The electric power required in automotive systems is quickly reaching a level that significantly impacts costs and fuel consumption. This drives the need to reconsider an electric energy management function. Fast evolving factors such as increasing power usage, and stricter engine management and reliability requirements necessitate a global vehicle approach to energy management. Innovations such as new powernet concepts (42 volt or dual voltage systems), new component technologies (high-performance energy storage, high efficiency and controllable generators), and global electronic and software architecture concepts will enable this new energy management concept. This paper describes key issues to maximize energy availability with reasonable components.
X