Refine Your Search

Topic

Author

Search Results

Journal Article

Analytical Model for Human Thermal Comfort in Passenger Vehicles

2011-04-12
2011-01-0130
An analytical model, which takes care of thermal interactions of human body with surroundings via basic heat transfer modes like conduction, convection, radiation and evaporation, is compiled. The analytical model takes measurable inputs from surroundings and specific human parameters. Using these parameters a quick calculation entailing all heat transfer modes ensues in net heat exchange of human body with surroundings. Its magnitude and direction decides the qualitative indication of thermal comfort of concerned human being. The present model is scaled on actual human beings by noting the subjective assessment in comfortable as well as uncomfortable surroundings. As a part of validation, it is implemented in an actual Climatic Wind Tunnel Heater test, where temperatures and other parameters on different parts of the body are noted down and fed to the model as input. Output of the equation is then compared with the subjective assessment of human beings.
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Enhancing Productivity in Design by Front Loading and Simultaneous Engineering Using CAD Morphing

2020-04-14
2020-01-0496
Automotive OEMs are launching multiple products with ever reducing development time, balancing costs, quality and time to market, with clear focus on performance and weight. Platform architecture concepts, modular designs for differentiation etc. are strategies adopted by automotive OEMs towards shorter development cycles. Thus, concept generation phase of the digital product development process is expected to enable generation and evaluation of multiple concept architectures, carry out performance studies and largely focus on optimization, upfront. This Front loading of engineering and call for simultaneous engineering requires support in terms of quick and good CAD modeling with maturity. This paper proposes a process that focuses on generation and evaluation of multiple concepts, besides enabling optimization of concept before the detailed design phase kicks in.
Journal Article

Front Under Run Protection Device Strength Test Certification Through FE Simulations

2011-04-12
2011-01-0529
Passive safety regulations specify minimum safety performance requirements of vehicle in terms of protecting its occupants and other road users in accident scenarios. Currently for majority cases, the compliance of vehicle design to passive safety regulations is assessed through physical testing. With increased number of products and more comprehensive passive safety requirements, the complexity of certification is getting challenged due to high cost involved in prototype parts and the market pressures for early product introduction through reduced product development timelines. One of the ways for addressing this challenge is to promote CAE based certification of vehicle designs for regulatory compliance. Since accuracy of CAE predictions have improved over a period of time, such an approach is accepted for few regulations like ECE-R 66/01, AIS069 etc which involves only loadings of the structures.
Journal Article

Vehicle Level Approach for Optimization of On-Board Diagnostic Strategies for Fault Management

2013-04-08
2013-01-0957
As the vehicle functions are getting distributed over multiple ECUs in order to realize various complex control functions, the need for sophisticated on-board diagnostic strategies are increasing in automotive domain, leading to a significant amount of hardware and software implementations for fault management inside various ECUs in the vehicle. This paper proposes optimized vehicle level approach for fault management strategies, wherein a centralized intelligent Gateway Module is proposed in the vehicle network architecture, which will be responsible for fault management of the complete vehicle in a chronological sequence. This Gateway Module will thereby have the possibility to group a cluster of faults raised by different ECUs and correlate them meaningfully to guide the operator towards root cause of the fault.
Technical Paper

Application of CFD Methodology to Reduce the Pressure Drop and Water Entry in the Air Intake System of Turbocharged Engine

2008-04-14
2008-01-1172
When an automobile negotiates a flooded region, water is splashed due to the rotational motion of the wheels. This water enters the air intake system of the turbocharged intercooled engine along with air and can pass through the turbocharger, intercooler and enter the engine. As water is an incompressible fluid, the piston cannot compress water inside the cylinder which leads to connecting rod bending and severe engine damage. This paper explains how the same has been resolved using CFD methodology and proposes the re-designed model of mud cover as a solution to this problem. The entire process has been streamlined and major time and cost reduction achieved by using simulation for optimization. The simulated results have been validated by extensive trials for correlation and outdoor tests for durability. Same analysis technique is used as a template to modify the air intake system.
Technical Paper

Design of Commercial Vehicle Cooling Packages

2008-04-14
2008-01-0264
Optimization of vehicle engine cooling package with requisite heat rejection capacity plays a key role in achieving most fuel economy and also in meeting the stringent noise norms. A set of design and operating features from existing vehicle engine cooling systems is reviewed and evaluated for their potential to provide optimized engine cooling. The features reviewed states significant potential in engine performance but these are balanced by satisfying required engine cooling requirement. Sets of trials are carried out on said vehicle with dissimilar features of cooling packages and the results are evaluated. Fuel economy trials in performance mode are carried out on vehicle with well thought-out cooling package for healthier comparison.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

Development of Exhaust Silencer for Improved Sound Quality and Optimum Back Pressure

2010-04-12
2010-01-0388
For an automotive exhaust system, noise level and back pressure are the most important parameters for passenger comfort and engine performance respectively. The sound quality perception of the existing silencer design was unacceptable, although the back pressure measured was below the target limit. To improve the existing design, few concepts were prepared by changing the internal elements of silencer only. The design constraints were the silencer shell dimensions, volume of silencer, inlet pipe and outlet tailpipe positions, which had to be kept same as that of the existing base design. The sound quality signal replaying and synthesizing was performed to define the desired sound quality. The numerical simulation involves 3D computational fluid dynamics (CFD) with appropriate boundary condition having less numerical diffusions to predict the back pressure. The various silencer concepts developed with this preliminary analysis, was then experimentally verified with the numerical data.
Technical Paper

Deployment of CFD for Optimization of the Air Flow Distribution Over the Windscreen and Prediction of Defrost Performance

2010-04-12
2010-01-1059
In recent times, CFD (Computational Fluid Dynamics) simulation tools have been deployed by automotive OEMs for investigating Climate Control applications. In automotive vehicles, one such critical application is designing defroster nozzles with least flow resistance to carry hot air from HVAC (Heating Ventilation and Air Conditioning) unit and dispersing it onto the windscreen and side glasses to clear mist and ice. Clearance of windscreen and side window glass has a high importance for safe driving as mist and ice formation affects driver's visibility and comfort while driving in humid and snowy conditions respectively. In the present study, a half cabin model of the vehicle is prepared using commercial software package ICEM CFD as grid generation tool and CFD analysis is carried out using commercial software package FLUENT 6.3 to optimize the air flow distribution over the windscreen and then to predict defrost performance prior to full scale climatic wind tunnel tests.
Technical Paper

A Novel and Low Cost Strategy for Distance Logging in EEPROM for OBD-I Compliance

2011-04-12
2011-01-0708
On Board Diagnostics norms enforced by regulatory authorities of many countries require logging of distance traveled by the vehicle with MIL (malfunction indicator lamp) illuminated. This log needs to be maintained in non-volatile ECU memory. Conventional techniques maintain the log in a volatile memory during vehicle run-time and transfer the same to non-volatile memory when ignition is turned off. This requires use of a “power-hold” relay to keep an ECU power alive while the logged data in volatile memory is being transferred to non-volatile memory when ignition is switched-off. A novel strategy described in this paper avoids interface with power-hold relay, thereby reducing the system complexity. The design philosophy described makes use of an EEPROM to maintain the distance log. An innovative algorithm is employed to ensure that endurance specifications are not violated during the vehicle life-time.
Technical Paper

Feed Forward and Integral Control of an EGR Valve

2011-04-12
2011-01-0689
Automotive embedded control systems need to implement real-time closed-loop control strategies for controlling valves, motors, etc. The implementation needs to focus on use of low cost hardware and efficient software with minimal foot-print so as to adequately meet the application requirement. This paper highlights the low cost hardware and software design concepts by way of a case study related to control of progressive EGR valve. The control strategy is based on "map-driven set-points" where percentage opening of the valve is stored in the form of 16x16 matrices. The set-points are accessed based on instantaneous throttle and engine rpm values which form the row and column indices of the map. The closed loop control algorithm eliminates the need for multiplication by implementing "feed-forward with integral control algorithm." A feed-forward map specifies the most likely PWM duty cycle to be applied to the valve for a given set-point.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Design Methods to Optimize the Performance of Controller Area Networks

2012-04-16
2012-01-0194
This literature is in the field of communication networks where different Electronic Control Units (ECUs) communicate with each other over Controller Area Network (CAN) protocol. Typically these types of CAN networks are widely used in automotive vehicles, plant automations, etc. This proposed method is applicable in all such applications where controller area network is used as backbone electrical architecture. This literature proposes a new method of CAN signal packing into CAN frames so that network bus-load is minimized so that more number of CAN signals can be packed and more number of ECUs can be accommodated within a CAN network. The proposed method also ensures that the age of each CAN signal is minimized and all CAN signals reach the intended receiving ECUs within their maximum allowed age. Typically network designers are forced to design and develop multiple sub-networks and network gateways to get rid of network bus-load.
Technical Paper

Experimental Studies on the Effect of Vaporizer Heating and Transition Temperature in a Bi-Fuel LPG Vehicle

2011-01-19
2011-26-0006
Liquefied Petroleum Gas (LPG)-powered vehicles use a pressure regulator/vaporizer to expand and modulate the gas pressure to meet the engine's operational demands. This expansion process is accompanied by a phase change wherein liquid LPG is converted to its gaseous form. This consequently reduces the temperature of the working fluid which may result in freezing (Joule-Thompson effect). In order to aid complete phase change and avoid any freezing, the vaporizer is heated either electrically or by the engine coolant circulation. Any inefficiency in the heating may lead to improper phase change and can result in a phenomenon known as "liquid carryover," wherein a liquid LPG gets entrained in the downstream gas circuit where the gaseous form is demanded. The liquid carryover (if any) leads to the improper engine functioning leading to driveability and emission issues.
Technical Paper

Application of a Pre-Turbocharger Catalyst (PTC) on an Indian Multi Utility Diesel Vehicle for Meeting BS IV

2011-01-19
2011-26-0024
Diesel engines tend to operate on lower exhaust temperatures, compared to their gasoline counterparts. Exhaust emission control becomes a significant issue at these lower temperatures, as any catalytic converter needs certain light off temperature to commence functioning. The trend so far has been to move the catalytic converters closer to the exhaust manifold, in order to get the benefit of higher temperatures - but most of the applications are limited to the location available after the turbo chargers. This is due the fact that very minute and efficient catalyst is required, if it has to be placed before the turbo charger. This catalyst also needs to be extremely durable to take care of high exotherms which occur within the catalysts and also to prevent any possible damage to the turbo chargers.
Technical Paper

Low Cost Vehicle Validation Strategy for Early Detection and Correction of Real-Life Performance Deficiencies of Various Subsystems

2012-04-16
2012-01-0930
Increasing number of ECU's (Electronic Control Units) being used in modern vehicles have given rise to HIL (hardware in the loop) testing, and model based design approach to design/test ECU's even before the proto-type vehicle is ready. However, it is not uncommon to discover surprising system design lapses during actual vehicle operation reported after vehicle launch. Major cause behind such lapses are found to be the gap between actual field performance/robustness of various vehicle sub-systems interfaced with ECU's and those modeled as ideal cases during HIL testing in the lab. This creates a need to evolve effective vehicle-level validation strategies to expose such performance deficiencies of real life sub-systems provided by the vendors. This paper describes a new approach to validate ECU in real time.
Technical Paper

Regenerative Braking Strategy for an Unaltered Mechanical Braking System of a Conventional Vehicle Converted into a Hybrid Vehicle

2013-01-09
2013-26-0155
Regenerative braking has become one of the major features for a hybrid vehicle as it converts brake energy into electrical energy storable into battery and leads to an increase in overall fuel efficiency of the vehicle. Traditional regenerative braking systems are designed such that the mechanical braking force from the friction brakes is varied in order to get maximum electric braking. This is the optimum method; however, such a system calls from electronics (Anti-lock Braking System) for regulation of mechanical braking leading to an increased cost. In this paper, the authors present a new strategy for implementing a regenerative brake strategy without changing the mechanical brake system of a conventional vehicle converted to a hybrid vehicle. The electric motor that serves as the traction motor or the Integrated Starter Generator (ISG) system, is used for regenerative braking also. There is no change in the other vehicle specifications as compared to the conventional vehicle.
X