Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Modeling and Experimental Studies of Crack Propagation in Laminated Glass Sheets

2014-04-01
2014-01-0801
Polyvinyl Butyral (PVB) laminated glass has been widely used in automotive industry as windshield material. Cracks on the PVB laminated glass contain large amount of impact information, which can contribute to accident reconstruction investigation. In this study, the impact-induced in-plane dynamic cracking of the PVB laminated glass is investigated. Firstly, a drop-weight combined with high-speed photography experiment device is set up to investigate the radial cracks propagation on the PVB laminated glass sheet. Both the morphology and the velocity time history curve of the radial cracks are recorded and analyzed to investigate the basic mechanism of the crack propagation process. Afterwards, a three-dimensional laminated plate finite element (FE) model is set up and dynamic cracking process is simulated based on the extended finite element method (XFEM).
Journal Article

Large Eddy Simulation of an n-Heptane Spray Flame with Dynamic Adaptive Chemistry under Different Oxygen Concentrations

2015-04-14
2015-01-0400
Detailed chemical kinetics is essential for accurate prediction of combustion performance as well as emissions in practical combustion engines. However, implementation of that is challenging. In this work, dynamic adaptive chemistry (DAC) is integrated into large eddy simulations (LES) of an n-heptane spray flame in a constant volume chamber (CVC) with realistic application conditions. DAC accelerates the time integration of the governing ordinary differential equations (ODEs) for chemical kinetics through the use of locally (spatially and temporally) valid skeletal mechanisms. Instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length (LOL) and emissions are investigated to assess the effect of DAC on LES-DAC results. The study reveals that in LES-DAC simulations, the auto-ignition time and LOL obtain a well agreement with experiment data under different oxygen concentrations.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
Journal Article

Research on Temperature and Strain Rate Dependent Viscoelastic Response of Polyvinyl Butaral Film

2016-04-05
2016-01-0519
The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate. Finally, two thermal viscoelastic constitutive model (ZWT model and DSGZ model) are suggested to describe the tension behavior of PVB film at various strain rates and temperatures.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Technical Paper

Cooperative Ramp Merging Control for Connected and Automated Vehicles

2020-02-24
2020-01-5020
Traffic congestions are increasingly severe in urban areas, especially at the merging areas of the ramps and the arterial roads. Because of the complex conflict relationship of the vehicles in ramps and arterial roads in terms of time-spatial constraints, it is challenging to coordinate the motion of these vehicles, which may easily cause congestions at the merging areas. The connected and automated vehicles (CAVs) provides potential opportunities to solve this problem. A centralized merging control method for CAVs is proposed in this paper, which can organize the traffic movements in merging areas efficiently and safely. In this method, the merging control model is built to formulate the vehicle coordination problem in merging areas, which is then transformed to the discrete nonlinear optimization form. A simulation model is built to verify the proposed method.
Technical Paper

An Improved Probabilistic Threat Assessment Method for Intelligent Vehicles in Critical Rear-End Situations

2020-04-14
2020-01-0698
Threat assessment (TA) method is vital in the decision-making process of intelligent vehicles (IVs), especially for ADAS systems. In the research of TA, the probabilistic threat assessment (PTA) method is acting an increasing role, which can reduce the uncertainties of driver’s maneuvers. However, the driver behavior model (DBM) used in present PTA methods was mainly constructed by limited data or simple functions, which is not entirely reasonable and may affect the performance of the TA process. This work aims to utilize crash data extracted from Event Data Recorder (EDR) to establish more accurate DBM and improve the current PTA method in rear-end situations. EDR data with responsive maneuvers were firstly collected, which were then employed to construct the initial DBM (I-DBM) model by using the multivariate Gaussian distribution (MGD) framework. Besides, the model was further subdivided into six parts by two important risk indicators, Time-to-collision (TTC) and velocity.
Technical Paper

Decision Making and Trajectory Planning for Lane Change Control Inspired by Parallel Parking

2020-04-14
2020-01-0134
Lane-changing systems have been developed and applied to improve environmental adaptability of advanced driver assistant system (ADAS) and driver comfort. Lane-changing control consists of three steps: decision making, trajectory planning and trajectory tracking. Current methods are not perfect due to weaknesses such as high computation cost, low robustness to uncertainties, etc. In this paper, a novel lane changing control method is proposed, where lane-changing behavior is analogized to parallel parking behavior. In the perspective of host vehicle with lane-changing intention, the space between vehicles in the target adjacent lane can be regarded as dynamic parking space. A decision making and path planning algorithm of parallel parking is adapted to deal with lane change condition. The adopted algorithm based on rules checks lane-changing feasibility and generates desired path in the moving reference system at the same speed of vehicles in target lane.
Journal Article

The Fixed Points on the Nonlinear Dynamic Properties and the Parameters Identification Method for Hydraulic Engine Mount

2008-04-01
2008-01-2763
Based on the third generation of hydraulic engine mounts (HEMs), which has three types of hydraulic mechanisms such as inertia track, decoupler and disturbing plate, the influences of the three different hydraulic mechanisms on the dynamic properties were studied experimentally. The working principles of the three hydraulic mechanisms and the relationship between the dynamic properties of the three generations of HEMs were revealed clearly, these experimental results will be helpful for HEM design selection. It was discovered experimentally that the frequency-dependent dynamic properties of HEM with inertia track or orifice have fixed points under different excitation displacement amplitudes. Based on the facts that the analytical results matched well with the experimental ones, a new parameter-identification-method for HEM is presented, which is clear in theory and is time- and cost-saving, the identified results were reliable.
Technical Paper

A Stochastic Energy Management Strategy for Fuel Cell Hybrid Vehicles

2007-01-23
2007-01-0011
An energy management strategy is needed to optimally allocate the driver's power demands to different power sources in the fuel cell hybrid vehicles. The driver's power demand is modelled as a Markov process in which the transition probabilities are estimated on the basis of the observed sample paths. The Markov Decision Process (MDP) theory is applied to design a stochastic energy management strategy for fuel cell hybrid vehicles. This obtained control strategy was then tested on a real time simulation platform of the fuel cell hybrid vehicles. In comparison to the other 3 strategies, the constant bus voltage strategy, the static optimization strategy and the dynamic programming strategy, simulations in the Beijing bus driving cycle demonstrate that the obtained stochastic energy management strategy can achieve better performance in fuel economy in the same demand of dynamic.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Analysis of Causes of Rear-end Conflicts Using Naturalistic Driving Data Collected by Video Drive Recorders

2008-04-14
2008-01-0522
Studying traffic accidents by using naturalistic driving data has become increasingly appealing for its potential benefits in improving road safety. This paper presents findings from a field test which has been conducted on 50 taxis in the urban areas of Beijing for 10 months using Video Drive Recorders (VDRs). The VDR used in this study could record the information of vehicle front view video, vehicle states, as well as driver operations immediately before and after an event. The drivers were given no specific instructions during the test, and the instrumentation for data collection was unobtrusive. Important safety-relevant parameters, such as vehicle speed, pre-event maneuver, time headway, time-to-collision, and driver reaction time, were calculated with precision. Based on these parameters, an analysis into features and causes of rear-end conflicts is performed.
Technical Paper

Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Engine - Control Strategy and Engine Performance Evaluation

2009-11-02
2009-01-2700
Advanced compression ignition combustion system which reduces simultaneously both nitride oxides (NOx) and particulate matter (PM) is a promising approach to meet future emission regulations. In order to achieve advanced compression ignition, flexible fuel injection is required for ultra-early and post-TDC injections, which conventional injector fails to accomplish due to wall-wetting effect. In this work, special injectors with the spray angle of 60 degree are applied on a 4 cylinder mass-production diesel engine without modification of the engine configuration. For application-oriented study, sweep experiments of injection timings and durations, fuel injection pressure and the boost pressure are carried out to investigate the relationships between the control parameters and the engine performance. Model based calibration and real application tests validate the maximum applicable operation range of maximum speed of 2200 RPM and IMEP of 8.0 bar.
Technical Paper

Development of a Legform Impactor with 4-DOF Knee-Joint for Pedestrian Safety Assessment in Omni-Direction Impacts

2011-04-12
2011-01-0085
The issue of car-to-pedestrian impact safety has received more and more attention. For leg protection, a legform impactor with 2 degrees-of-freedom (DOF) proposed by EEVC is required in current regulations for injury assessment, and the Japan Automobile Manufacturers Association Inc. (JAMA) and Japan Automobile Research Institute (JARI) have developed a more biofidelic pedestrian legform since 2000. However, studies show that those existing legforms may not be able to cover some car-to-pedestrian impact situations. This paper documents the development of a new pedestrian legform with 4 DOFs at the knee-joint. It can better represent the kinematics characteristics of human knee-joint, especially under loading conditions in omni-direction impacts. The design challenge is to solve the packaging problem, including design of the knee-joint mechanisms and layout of all the sensors in a limited space of the legform.
Technical Paper

Head Protection Characteristics of Windshield During Pedestrian-Vehicle Accident

2011-04-12
2011-01-0082
The windshield is one of the most critical vehicle components in terms of pedestrian safety; however, it has not been thoroughly and systematically investigated through combined experimental and theoretical analysis. Firstly, this paper carries out quasi-static experiments on Material Testing System (MTS) and dynamic experiments on Split Hopkinson Pressure Bar (SHPB) and new tests data are obtained. Results indicate that Polyvinyl butyral (PVB)-laminated glass behaves nonlinearly and rate-dependently under various strain rates, from 1x10-⁵s-₁~6x10₃ s-₁. Thus, a constitutive model covering all strain rates is proposed to describe the constitutive behavior of PVB-laminated glass and it fits well with the experimental data. Further, the constitutive relation is embedded into the 3D finite element model of windshield. With the definition of four governing factors and two evaluation indicators, the head protection characteristics of windshield are numerically studied.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Autonomous Emergency Braking Control Based on Hierarchical Strategy Using Integrated-Electro-Hydraulic Brake System

2017-09-23
2017-01-1964
Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
Technical Paper

Effect of Fuel Detergent on Injector Deposit Formation and Engine Emissions in a Gasoline Direct Injection (GDI) Engine

2017-10-08
2017-01-2247
Gasoline direct injection (GDI) engines have been developed rapidly in recent years, driven by stringent legislative requirements on vehicle fuel efficiency and emissions. However, one challenge facing GDI is the formation of particulate emissions, particularly with the presence of injector tip deposits. The Chinese market features some gasoline fuels that contain no detergent additives and are prone to deposit formation, which can affect engine performance and emissions. The use of detergent additives to mitigate the formation of injector deposits in a GDI engine was investigated in this study by testing a 1.5L turbocharged GDI engine available in the Chinese market. The engine was operated both on base gasoline and on gasoline dosed with detergent additives to evaluate the effect on injector deposit formation and engine performance and emissions.
Technical Paper

Glow Plug Assisted Compression Ignition (GA-CI) in Cold Conditions

2017-10-08
2017-01-2288
Low temperature combustion (LTC) is an advanced combustion mode, which can achieve low emissions of NOx and PM simultaneously, and keep relatively high thermal efficiency at the same time. However, one of the major challenges for LTC is the cold condition. In cold conditions, stable compression ignition is hard to realize, while thermal efficiency and emissions deteriorate, especially for gasoline or fuel with high octane number. This study presents using pressure sensor glow plugs (PSG) to realize Glow plug assisted compression ignition (GA-CI) at cold conditions. Further, a glow plug control unit (GPCU) is developed, a closed-loop power feedback control algorithm is introduced based on GPCU. In the experiment, engine coolant temperature is swept. Experimental results show that GA-CI has earlier combustion phases, larger combustion duration and higher in-cylinder pressure. And misfire is avoided, cycle-to-cycle variations are greatly reduced.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
X