Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

An Investigation on the Regeneration of Lean NOx Trap Using Ethanol and n-Butanol

2019-04-02
2019-01-0737
Reduction of nitrogen oxides (NOx) in lean burn and diesel fueled Compression Ignition (CI) engines is one of the major challenges faced by automotive manufacturers. Lean NOx Trap (LNT) and urea-based Selective Catalytic Reduction (SCR) exhaust after-treatment systems are well established technologies to reduce NOx emissions. However, each of these technologies has associated advantages and disadvantages for use over a wide range of engine operating conditions. In order to meet future ultra-low NOx emission norms, the use of both alternative fuels and advanced after-treatment technology may be required. The use of an alcohol fuel such as n-butanol or ethanol in a CI engine can reduce the engine-out NOx and soot emissions. In CI engines using LNTs for NOx reduction, the fuel such as diesel is utilized as a reductant for LNT regeneration.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Journal Article

Preliminary Investigation of Exhaust Pressure Waves in a Single Cylinder Diesel Engine and the Impacts on Aftertreatment Sprays

2017-03-28
2017-01-0616
The pressure wave actions were investigated in the exhaust system of a single cylinder diesel engine through both experimental and simulation methods. The characteristics of the exhaust pressure waves under different engine operating conditions, such as engine load and exhaust backpressure, were examined. The results showed that the strength of the exhaust pressure wave was affected by both the in-cylinder pressure and the exhaust backpressure in the exhaust system during the period when the exhaust valves were open. The exhaust gas flow velocity was also estimated by the one dimensional simulation tool AVL BOOST™. The results suggested that the velocity of the exhaust gas fluctuated during the engine cycle, and followed trends similar to the exhaust pressure wave. The transient gas flow velocity was high when there was a strong compression wave, and it was reduced when the pressure fluctuations in the exhaust manifold were small.
X