Refine Your Search

Topic

Author

Search Results

Journal Article

The Effect of Surface Morphology of Cylinder Bore Surface on Anti-Scuffing Property made by High Pressure Die-Casting Process using Hyper-Eutectic Al-Si Alloy

2013-10-15
2013-32-9046
A monolithic type aluminum (Al) cylinder made of hypereutectic Aluminum-Silicon alloy has been widely used for motorcycle applications. It has a lightweight structure and a superior cooling ability owing to its material property and surface finishing. Usually the cylinder bore surface of the monolithic type Al cylinder is finished by an etching process or a honing process in order to expose silicon (Si) particles from aluminum (Al) matrix for the improvement of the tribological properties. The morphology of the cylinder bore surface including the exposure of Si particles is supposed to make an important effect on its tribological properties, especially on the anti-scuffing property. In this research, the anti-scuffing property of three kinds of cylinder bore finishing, an etched surface, a Si exposure honed surface and a conventional plateau honed surface is evaluated with using a reciprocated type wear tester. The experimental results are analyzed by using Weibull analysis.
Journal Article

Improvement of the Startability with Reverse Stroke Intake Devices for a Motorcycle Engine

2014-11-11
2014-32-0107
This paper proposes a novel engine starter system composed of a small-power electric motor and a simple mechanical valve train. The system makes it possible to design more efficient starters than conventional systems, and it is especially effective to restart engines equipped with idling stop systems. Recently, several idling stop systems, having intelligent start-up functions and highly-efficient generate capabilities have been proposed for motorcycles. One of challenges of the idling stop systems is the downsizing of electric motors for starting-up. However, there are many limitations to downsize the electric motors in the conventional idling stop systems, since the systems utilize the forward-rotational torque of the electric motors to compress the air-fuel mixture gas in the cylinders. Our studies exceeded the limitations of downsizing the electric motors by mainly using the engine combustion energy instead of the electric energy to go over the first compression top dead center.
Journal Article

Friction Measurement of Al-17%Si Monolithic Cylinder with using Newly Developed Floating Liner Device

2014-11-11
2014-32-0052
The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. A piston-cylinder system plays an important role for the reduction of an engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. To meet the above-mentioned demand, frictional waveforms were measured with using the renewed floating liner device. In the newly developed floating liner device, an actual cylinder block itself was used as a test specimen. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17%Si alloy using a high pressure die casting process. The combined piston was a light weight forged piston and a DLC coated piston ring was used. For the measurement, 110cc air cooled single cylinder engine was used.
Journal Article

Development of Fracture-Split Connecting Rods Made of Titanium Alloy for Use on Supersport Motorcycles

2015-11-17
2015-32-0830
A connecting rod made of titanium alloy is effective for lower fuel consumption and higher power output comparing to a steel one because the titanium connecting rod enables to reduce the weight of both of reciprocating and rotating parts in an entire engine substantially. But up to now, it has been adopted only to expensive and small-lot production models because a material cost is high, a processing is difficult and a wear on a sliding area should be prevented. In order to adopt the titanium connecting rods into a more types of motorcycles, appropriate materials, processing methods and surface treatment were considered. Hot forging process was applied not only to reduce a machining volume but also to enhance a material strength and stiffness. And the fracture-splitting (FS) method for the big-end of the titanium connecting rod was put into a practical use.
Technical Paper

Motorcycle Engine Development System by Using a Test Bed with Simulation Technology

2006-11-13
2006-32-0103
With the hope of efficient and sophisticated motorcycle engine development, an engine test bed that can simulate vehicle running conditions using an ultra-low inertia motor and high response load control system was constructed, and was applied to the development of engines. By combining an exhaust gas analyzer, an exhaust gas constant volume sampler (CVS), and a data processing system, mass emissions could be measured in various test cycles. This system's advantages for data repeatability and test efficiency compared with a chassis test using a vehicle were confirmed. An acceleration test was conducted to assess running performance, and good agreement with actual driving values was confirmed. In addition, by measuring and evaluating engine response to throttle manipulation, it was possible to evaluate driveability on the test bed. These test findings indicate that this test bed can simulate vehicle driving tests with the engine only and will be a useful tool in engine development.
Technical Paper

Study of bonded valve-seat system (BVS)

2000-06-12
2000-05-0144
The Bonded Valve Seat System is the latest technology to realize drastic reduction in valve temperature in SI engines characterized by the good thermal conductivity of extremely thin valve seats bonded directly on the aluminum cylinder head. A unique and highly rationalized resistance bonding technique was developed to maintain adequate bonding strength and positioning precision in a short bonding period of around one second. Engineering data on optimization of bonding-section geometry, valve seat material and the surface treatment and bonding parameters were presented and discussed regarding the mechanism. The geometry of the bonding section of the cylinder head was optimized by FEM analysis so that the aluminum material should deform to embed the valve seat ring with the action of expelling the surface contamination and the oxide film. The bonding facility was modified so that the electrode axis should move flexibly according to distortion of the cylinder head during bonding.
Technical Paper

Fuel Injection System for Small Motorcycles

2003-09-15
2003-32-0084
Attempts have been made to develop an electronically controlled fuel injection system that is ideal for small motorcycles, cost-efficient, compact, and electric power-saving while maintaining accuracy. For reducing the number of sensors and cost, highly accurate methods have been developed for the measurement of intake air mass, detection of acceleration, distinction of engine stroke, and estimation of atmospheric pressure without using a throttle position sensor, cam timing sensor, and barometric sensor in such a manner as to carry out sampling with the intake manifold pressure of single-cylinder engines synchronizing with the crank angle. For compactness and electric power saving, an injector and in-tank fuel pump module have been developed for small motorcycles.
Technical Paper

Visual Study Focused on the Combustion Problem in Gasoline Direct Injection Engine

2003-09-16
2003-32-0014
Combustion phenomena inside the actual Gasoline-Direct-Injection (GDI) engines have been drawing high attention to its emission characteristics as well as its potential to deal with ultra lean mixture. Although the detailed observation is necessary for its improvement, combustion visualization seems to be strangely overlooked for some reason. This study focuses on the direct observation of GDI combustion to clarify the difficulties behind GDI concept by using a test engine of an actual “wall-guided” configuration and by comparing GDI spray quality with diesel spray in a high-pressure constant volume bomb. The results show that some of the problems about GDI combustion seem to be rather essential than easily conquered, which suggests the necessity for another combustion concept.
Technical Paper

Light Body for Small Vehicles Using High-Quality Die-Casting Component

2003-10-27
2003-01-2869
A high-quality die-casting technology has been developed for lightweight aluminum frame structures that produces high-strength aluminum parts that are also weldable. This new technology has been used in casting frames for motorcycles and snowmobiles and has enabled improved frame designs with far fewer component parts than was possible before. This die-casting technology also results in a significant reduction in energy consumption during the manufacturing process.
Technical Paper

Flow, Combustion and Emissions in a Five-Valve Research Gasoline Engine

2001-09-24
2001-01-3556
The in-cylinder flow, mixture distribution, combustion and exhaust emissions in a research, five-valve purpose-built gasoline engine are discussed on the basis of measurements obtained using laser Doppler velocimetry (LDV), fast spark-plug hydrocarbon sampling, flame imaging and NOx/HC emissions using fast chemiluminescent and flame ionisation detectors/analysers. These measurements have been complemented by steady flow testing of various cylinder head configurations, involving single- and three-valve operation, in terms of flow capacity and in-cylinder tumble strength.
Technical Paper

Development of Magnetostriction-type Load Sensor for Measurement System Using Motorcycle Testing Robot

2002-03-04
2002-01-1073
A control system for auto driving of motorcycle using anthropomorphic robot has been developed to efficiently evaluate a motorcycle with high accuracy, the performance of which is becoming higher. For magnetostriction-type load sensor, which is absolutely necessary for this system, the strain gauge type load cell has been used conventionally. However, the detection sensitivity, strength, and responsibility have not been satisfied completely under engine vibration conditions. To solve this problem, a magnetostriction-type load sensor has been newly developed. As a result of the tests with actual machines, it is found that this magnetostriction-type load sensor satisfies the conditions necessary for the motorcycle drive control system and measurement system.
Technical Paper

Reduction of Circuit Inductance in Motor Controllers for Electric Vehicles

2003-01-15
2003-32-0065
1 Research was conducted on reduction of circuit inductance for the purpose of reducing the surge voltage generated during switching by FET (field effect transistor / semiconductor device) in the power modules of motor controllers for golf carts (Fig. 1) and other electric vehicles. The motor control system is composed of the battery, the motor controller, the motor, and the wirings that connect them, and the inductance exists in them altogether. It became clear from simulation analysis and measurements from a prototype that only the inductance within the motor controller among these composition parts influences the surge voltage. And it became clear that there is a correlation between surge voltage and the sum of the inductance of the electrolytic capacitor inside the power module and the inductance of the circuit by which current is supplied from the electrolytic capacitor to the FET.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

An Experimental Study of Connecting Rod Big Ends

1995-02-01
950202
Connecting rod design factors, such as geometric shape, capscrew torque and materials can significantly affect bore distortion and assembly stress. In this paper, experiments using different materials were conducted on several connecting rod big-ends with various shapes, bosses and bolts. The results show that the distortion of the big-end bore and the bolt stress are influenced considerably by the big-end shape, the bolt axial tension and the material under inertia force. It was also observed that the bolt bending stress and the load separating the big-end joint surface could be calculated with high accuracy using three-dimensional FEM in the initial connecting rod design.
Technical Paper

Development of Computerized Lubrication System of 2-Stroke Gasoline Engines for Exhaust Smoke Reduction

1995-09-01
951800
YAMAHA MOTOR CO., LTD. has developed the YCLS system described in this report. The YCLS provides electrical support for a mechanical oil pump to offset its disadvantage. This system can reduce oil consumption at low engine speeds. As a result, it achieves its aim of reducing exhaust smoke, thus improving the dirty image of 2-stroke gasoline engines. Since the system reduces oil consumption in actual operation, it can be said that the technology contributes to resource saving.
Technical Paper

An Application of the Taguchi Method to the Development of a Supplementary Power Source for the Hybrid Bicycle

1995-09-01
951771
YAMAHA Motor has developed and marketed a hybrid bicycle with an electric supplemental power source which generates assist power in proportion to the pedal torque by riders. The key function required for this assist power control system is that the variation of the assist ratio should be as small as possible over wide range of riding conditions. The assist power control system consists of mechanical and electrical components and requires a very tight quality control of each component if the design fails to be robust to disturbances such as pedal torque or vehicle speed. We applied the Taguchi method to this development and succeeded in selecting the optimum combination of component levels in the system.
Technical Paper

Development of Fracture Splitting Method for Case Hardened Connecting Rods

2004-09-27
2004-32-0064
The fracture splitting (FS) method for case hardened connecting rods has been developed to improve engine performance while decreasing production costs. The FS method is widely used for automotive connecting rods because it effectively improves their productivity. Normalized forging steels, microalloyed forging steels and powder metals have generally been used as the material in the FS method as they are easily split due to their brittleness. On the other hand, the materials to be used for high performance motorcycles are case hardened low carbon steels because they allow the connecting rods to be lightweight due to their high fatigue strengths. These materials, which have a hardened area of approx. 0.5mm in depth from the surface, have a ductile texture inside. This texture obstructs the crack propagation and makes the split force too high to split without deforming the bearing area.
Technical Paper

L.D.V. Measurements of Pipe Flows in a Small-Two-Cycle Spark-lgnition Engine

1984-02-01
840425
A laser Doppler velocimeter is used to measure in real time the velocities of pipe flows in a crankcase-scavenged small two-cycle engine with piston and reed valves. Consequently the optical windows in each pipe must be exchanged instantly by using rotary window systems. The flows in both the inlet and exhaust pipes show different patterns in the motored and firing conditions, but the flows in the scavenging pipe are in a similar pattern regardless of the operating conditions.
Technical Paper

Development of Pollution-Free Rapid Plating System

1985-11-11
852264
It is in the plating process that the worst bottleneck occurs in plant automation. We, however, have succeeded in making our plating process free from pollution and compact, allowing us to install this system within a production line and consequently establish a continuous production line resulting in a decrease in plating cost to about 1/2 of the previous cost. We have achieved an excellent chrome plating speed of 60µ/min, by placing an anode relatively close to the part to be plated and by sending the plating solution into the space between the two by means of a pump. This provides a plating speed 100 times faster than with conventional methods, while improving the quality of the plating coat considerably. The system is optimum for functional platings, and can be used for the plating of shock absorber rods, engine valves, engine cylinders, etc.
X