Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Technical Paper

Behaviors of Spray Droplets with and without Flat Wall Impingement

2021-09-05
2021-24-0058
Fuel spray impingement on the combustion chamber wall cannot be avoid in direct injection gasoline engines, resulting in insufficient combustion and unburned hydrocarbon/soot emissions from the engines. And the microscopic characteristics of the impinging spray have a close relation with the fuel film formation, which has a direct effect on the engine performance and emissions. Therefore, figuring out the droplet behaviors of the impinging spray is significantly important for improving the engine performance and reducing emissions. However, the microscopic characteristics of the impinging spray have not been deeply understood and the differences between the impinging and free spray are seldom mentioned in previous study. Therefore, particle image analysis (PIA) technique was applied to detect the microscopic characteristics at the capture location in order to track the droplet behaviors of the spray tip during the propagation process.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Journal Article

Characterization of Internal Flow and Spray Behaviors of Hole-Type Nozzle under Tiny and Normal Injection Quantity Conditions for Diesel Engine

2016-04-05
2016-01-0862
The tiny and normal injection quantity instances usually happen under the multi-injection strategy condition to restrain the uncontrollability of the ignition timing of the homogeneous charge compression ignition (HCCI) combustion concept. Meanwhile, instead of the traditional and fundamental single-hole diesel injector, the axisymmetric multi-hole injectors are usually applied to couple with the combustion chamber under most practical operating conditions. In the current paper, the internal flow and spray characteristics generated by single-hole and multi-hole (10 holes) nozzles under normal (2 mm3/hole) and tiny (0.3 mm3/hole) injection quantity conditions were investigated in conjunction with a series of experimental and computational methods. High-speed video observation was conducted at 10000 and 100000 fps under the condition of 120 MPa rail pressure, 1.5 MPa ambient pressure, room temperature, and nitrogen environment to visualize different spray properties.
Journal Article

Ignition and Combustion Characteristics of Wall-Impinging Sprays Injected by Group-Hole Nozzles for Direct-Injection Diesel Engines

2008-10-06
2008-01-2469
The concept of two closely spaced micro-orifices (group hole nozzle) has been studied as a promising technology for the reduction of soot emission from direct injection (DI) diesel engines by improving the fuel atomization and evaporation. One of the main issues on group hole nozzle is the arrangement of orifices with various distances and angles. In this study, the ignition and combustion characteristics of wall-impinging diesel sprays from group-hole nozzles were investigated with various angles between two micro-orifices (included angles). A laser absorption scattering (LAS) technique for non-axisymmetric sprays, developed based on a LAS technique for axisymmetric spray, was applied to investigate the liquid/vapor mass distribution of wall-impinging sprays. The direct flame images and OH radical images inside a high pressure constant volume vessel were captured to analyze the effect of included angle on spray ignition and combustion characteristics.
Journal Article

Effect of Ethanol Ratio on Ignition and Combustion of Ethanol-Gasoline Blend Spray in DISI Engine-Like Condition

2015-04-14
2015-01-0774
To reduce carbon dioxide emission and to relieve the demand of fossil fuels, ethanol is regarded as one of the most promising alternative fuels for gasoline. Recently, using ethanol in the state-of-the-art gasoline engine, direct-injection spark-ignition (DISI) engine, has become more attention by researchers due to less knowledge of the ignition and combustion processes in that engine. In this study, different ethanol-gasoline blended fuels, E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle. The experimental environment was set to the condition similar with the near top dead center (TDC) in DISI engine. The high-speed imaging of shadowgraph, OH* chemiluminescence and flame natural luminosity were used to clarify the characteristics of the ignition process, flame development and propagation.
Technical Paper

Three Dimensional Visualization for Calculated Distributions of Diesel Spray and Flame in the Combustion Chamber of a D.I. Diesel Engine

1997-10-01
972867
Three-Dimensional visualization technique based on volume rendering method has been developed in order to translate a calculated result of diesel combustion simulation into an realistically spray and flame image. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three-dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique.
Technical Paper

Group-Hole Nozzle Effects on Mixture Formation and In-cylinder Combustion Processes in Direct-Injection Diesel Engines

2007-10-29
2007-01-4050
The group-hole (GH) nozzle concept that uses two closely spaced micro-orifices to substitute the conventional single orifice has the potential to facilitate better fuel atomization and evaporation, consequently attenuate the soot emission formed in direct-injection (D.I.) diesel engines. Studies of quantitative mixture properties of the transient fuel spray injected by the group-hole nozzles were conducted in a constant volume chamber via the laser absorption-scattering (LAS) technique, in comparison with conventional single-hole nozzles. Specific areas investigated involved: the non-evaporating and the evaporating ambient conditions, the free spray and the spray impinging on a flat wall conditions. The particular emphasis was on the effect of one of key parameters, the interval between orifices, of the group-hole (SH) nozzle structure.
Technical Paper

Mixture Formation and Combustion Processes of Multi-Hole Nozzle with Micro Orifices for D.I. Diesel Engines

2007-10-29
2007-01-4049
In order to investigate effects of the multi-hole nozzle with micro orifices on mixture formation processes in Direct-Injection Diesel engines, mixture characteristics were examined via an ultraviolet-visible laser absorption scattering (LAS) technique under various injectors. The injection quantity per orifice per cycle was reduced by nozzle hole sizes. The LAS technique can provide the quantitative and simultaneous measurements of liquid and vapor phases concentration distributions inside of the fuel spray. Mass of ambient gas entrained into the spray, liquid/ vapor mass and mean equivalence ratio of total fuel were obtained based on Lambert Beer's law. As a result, the leaner and more homogeneous fuel-gas mixture can be achieved by reducing the nozzle hole diameter, in the meanwhile more ambient gas were entrained into the spray. Moreover, relationships between mixture formation and D.I.
Technical Paper

A challenge to vapor distribution measurement of multi-component evaporating fuel spray via laser absorption-scattering (LAS) technique

2007-07-23
2007-01-1892
In the present study, a challenge has been made to quantitatively determine the vapor phase concentration distributions in an evaporating multicomponent fuel spray using the LAS imaging technique. The theoretical considerations were particularly given when applying the LAS imaging technique to the multicomponent fuel spray and reconstructing the vapor concentration distributions from the spray images.
Technical Paper

Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray

2007-07-23
2007-01-1890
Experimental study has been carried out on the effects of the micro-hole nozzle injector and ultra-high injection pressure on the mixture properties of D.I. Diesel engine. A manually operated piston screw pump, High Pressure Generator, was used to obtain ultra-high injection pressures. Three kinds of injection pressures, 100MPa, 200MPa, and 300MPa, were applied to a specially designed injector. Four kinds of nozzle hole diameters, 0.16mm, 0.14mm, 0.10mm, and 0.08mm, were adopted in this study. The laser absorption-scattering (LAS) technique was used to analyze the equivalence ratio distributions, Sauter mean diameter, spray tip penetration length, and other spray characteristics. The analyses of the experimental results show that the micro-hole nozzle and ultra-high injection pressure are effective to increase the turbulent mixing rate and to form the uniform and lean fuel-air mixture.
Technical Paper

An Experimental Study on Mixture Formation Process of Flat Wall Impinging Spray Injected by Micro-Hole Nozzle under Ultra-High Injection Pressures

2008-06-23
2008-01-1601
Increasing injection pressure and decreasing nozzle hole diameter have been proved to be two effective approaches to reduce the exhaust emissions and to improve the fuel economy. Recently, the micro-hole nozzles and ultra-high injection pressures are applicable in commercial Diesel engines. But the mechanism of these two latest technologies is still unclear. The current research aims at providing information on the spray and mixture formation processes of the micro-hole nozzle (d=0.08mm) under the ultra-high injection pressure (Pinj=300MPa). The flat wall impinging sprays were focused on and the laser absorption-scattering (LAS) technique was employed to obtain the qualitative and quantitative information at both atmospheric and elevated conditions. The spray parameters were collected, the mixing rate was discussed, and the effects of various parameters on mixture formation were clarified.
Technical Paper

Flame Propagation Characteristics in a Heterogeneous Concentration Distribution of a Fuel-Air Mixture

1998-10-19
982563
An experimental study was conducted to investigate the flame propagation characteristics in the presence of a heterogeneous concentration distribution of a fuel-air mixture in order to provide fundamental knowledge of the effects of gaseous mixture concentration heterogeneity on the combustion process. Different propane-air mixture distributions were produced by the reciprocating movements of a pair of perforated plates in a constant volume combustion chamber. The mean equivalence ratio of the fuel-air mixture was varied from 0.7 on the lean side to 1.6 on the rich side, the turbulence intensity in the combustion chamber was also varied at levels of 0.185 m/s, 0.130 m/s, 0.100 m/s, and 0.0 m/s. By an independent control of the mixture distribution and the turbulence intensity in the combustion chamber, the flame structure and flame propagation speed at various heterogeneous levels of the mixture distribution were investigated in detail.
Technical Paper

Characterization of Mixture Formation Processes in DI Gasoline Engine Sprays with Split Injection Strategy via Laser Absorption and Scattering (LAS) Technique

2003-10-27
2003-01-3161
In order to investigate the effect of split injections on mixture formation processes in Direct Injection (DI) gasoline engine sprays, an experimental study was conducted applying the laser absorption and scattering (LAS) technique to the sprays using double pulse injections with various dwells and mass ratios. The effects of various dwells and mass ratios between the pulsed injections on the spatial concentration distributions in the spray, the penetration of vapor and liquid phases, and the mean equivalence ratios of the vapor phase and overall spray, were clarified. It was found that the phenomenon of high concentration liquid spray piling up at the leading edge of the spray is avoided by the double injections with enough dwell or appropriate mass ratio. The maximum penetration length of the spray significantly decreases, especially for the liquid phase with high concentration.
Technical Paper

Quantitative Measurement of Liquid and Vapor Phase Concentration Distributions in a D.I. Gasoline Spray by the Laser Absorption Scattering (LAS) Technique

2002-05-06
2002-01-1644
To get quantitative measurements of liquid and vapor phase concentration distributions in a gasoline spray, a laser-based absorption and scattering (LAS) technique was developed. The LAS technique adopts ultraviolet and visible lasers as light sources and a test fuel, which absorbs the ultraviolet light but does not absorb the visible light, instead of gasoline. The LAS principle is based on the incident light extinction in the ultraviolet band due to both vapor absorption and droplets scattering, whereas in the visible band, the incident light extinction is due only to the droplet scattering. The absorption spectra and molar absorption coefficients of the candidate test fuels including p-xylene, benzene and toluene, all of which have physical properties similar to gasoline, were investigated, and p-xylene was finally selected as a test fuel. Measurement accuracy of the LAS technique was discussed.
Technical Paper

Characterization of Mixture Formation in Split-Injection Diesel Sprays via Laser Absorption-Scattering (LAS) Technique

2001-09-24
2001-01-3498
Experimental results of a diesel engine have shown that using split-injection can reduce the NOx and particulate emissions. For understanding the mechanism of emissions reduction, mixture formation in split-injection diesel sprays was characterized in the present paper. A dual-wavelength laser absorption-scattering (LAS) technique was developed by use of the second harmonic (532nm) and the fourth harmonic (266nm) of a pulsed Nd:YAG laser as the incident light and dimethylnaphthalene (DMN) as the test fuel. By applying this technique, imaging was made of DMN sprays injected into a high-temperature and high-pressure constant volume vessel by a single-hole nozzle incorporated in a common rail injection system for D.I. diesel engine. The line-of-sight optical thickness of both fuel vapor and droplets in the sprays was yielded from the sprays images.
Technical Paper

3-D PIV Analysis of Structural Behavior of D.I. Gasoline Spray

2001-09-24
2001-01-3669
Three-dimensional behaviors of direct injection (D.I.) gasoline sprays were investigated using 2-D and 3-D particle image velocimetry (PIV) techniques. The fuel was injected with a swirl type injector for D.I. gasoline engines into a constant volume chamber in which ambient pressure was varied from 0.1 to 0.4 MPa at room temperature. The spray was illuminated by a laser light sheet generated by a double-pulsed Nd:YAG laser (wave length: 532 nm) and the succeeding two tomograms of the spray were taken by a high-resolution CCD camera. The 2-D and 3-D velocity distributions of the droplet cloud in the spray were calculated from these tomograms by using the PIV technique. The effects of the swirl groove flows in the injector and the ambient pressure on the structural behavior of the droplet cloud in the spray were also examined.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

2003-05-19
2003-01-1811
Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.
Technical Paper

Spray, Mixture and Combustion Characteristics of Small Injection Amount Fuel Spray Injected by Hole Nozzle for Diesel Engine

2016-11-08
2016-32-0064
The injection amount per stage in a multiple injection strategy is smaller than a conventional single-stage injection. In this paper, the effect of the injection amount (0.27mg, 0.89mg, 2.97mg) under 100MPa injection pressure and the effect of injection pressure (100MPa, 150MPa, 170MPa) under different injection amounts (0.27mg, 2.97mg) on the spray and mixture formation characteristics were studied by analyzing the vapor/liquid phase concentration distributions obtained under various conditions via using the tracer LAS technique. The spray was injected into a high-pressure and high-temperature constant volume vessel by using a single-hole nozzle with a diameter 0.133mm. The higher the injection pressure with a smaller injection amount is, the shorter the spray tip penetration and leaner air-fuel mixture occur. The combustion processes had been examined by a high-speed video camera with the two-color pyrometry method.
Technical Paper

Effects of Nozzle Hole Diameter and Injection Pressure on Flame Lift-Off and Soot Formation in D.I. Diesel Combustion

2011-08-30
2011-01-1813
Previous research has shown that the reduced nozzle hole diameter and elevated injection pressure are effective for preparing a uniform fuel-air mixture in a direct injection (D.I.) Diesel engine. A micro-hole nozzle with a hole diameter of 0.08 mm and an ultra-high injection pressure of 300 MPa have been employed to investigate the mixture formation process under various conditions. The aim of the current work is to clarify the effect of nozzle hole diameter and injection pressure on flame lift-off and soot formation processes. The free sprays from the micro-hole and conventional nozzles were investigated at a high-temperature, high-pressure constant volume vessel. A high-speed video camera system was employed to record the non-vaporizing sprays and combustion. The direct photography of OH chemiluminescence was used to provide information about the high temperature combustion process and to measure the flame lift-off length.
X