Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Large-Eddy Simulation on the Effect of Droplet Size Distribution on Mixing of Passive Scalar in a Spray

2008-04-14
2008-01-0933
In this work simulation results of a round spray jet are presented using the combination of Large-Eddy Simulation (LES) and Lagrangian Particle Tracking (LPT). The simulation setup serves as a synthetic model of non-atomizing spray particles taken from the Rosin-Rammler size distribution that enter a chamber filled with gas through an inlet hole with diameter D. At the inlet gas velocity and droplet velocities are specified in addition to the initial size distribution of droplets. The Reynolds number as referred to the gas inflow velocity and jet diameter is Re=10000. The setup is advantageous for understanding the details of diesel sprays since it avoids near-nozzle spray modeling and thereof the corresponding error which is especially important in LES. Here, the implicit LES is applied so that the compressible Navier-Stokes equations are solved directly with a numerical algorithm in a fine mesh without a subgrid scale model.
Technical Paper

Momentum Coupling by Means of Lagrange Polynomials in the CFD Simulation of High-Velocity Dense Sprays

2004-03-08
2004-01-0535
The discrete droplet model is widely used to describe two-phase flows such as high-velocity dense sprays. The interaction between the liquid and the gas phase is modeled via appropriate source terms in the gas phase equations. This approach can lead to a strong dependence of the liquid-gas coupling on the spatial resolution of the gas phase. The liquid-gas coupling requires the computation of source terms using the gas phase properties, and, subsequently, these sources are then distributed onto the gas phase mesh. In this study, a Lagrange polynomial interpolation method has been developed to evaluate the source terms and also to distribute these source terms onto the gas mesh. The focus of this investigation has been on the momentum exchange between the two phases. The Lagrange polynomial interpolation and source term distribution methods are evaluated for non-evaporating sprays using KIVA3 as a modeling platform.
Technical Paper

Large Eddy Simulation of Flow over a Valve in a Simplified Cylinder Geometry

2011-04-12
2011-01-0843
This study focuses on gaining a deeper understanding on the formation of turbulence and other in-cylinder flow structures caused by the intake jets during the intake stroke in internal combustion engines. This is important as the in-cylinder turbulence has a large effect on the mixing of fuel and oxidizer. A fine resolution large eddy simulation (LES) is carried out on an incompressible flow (Re is equivalent to 100,000) over a static valve (lift d = 7 mm) alongside with three other simulations using coarser meshes. The problem is studied in a simplified valve-cylinder geometry on which experimental data by Yasar et al., (2006) is available. The vortex cores, produced by the shear layer of the intake jets, are visualized using the λ₂ definition for vortex cores. The governing flow structures are identified and some features of the flow's mixing capabilities are observed. Additionally, the mixing is studied by releasing a passive scalar into to the flow.
Technical Paper

Near Nozzle Diesel Spray Modeling and X-Ray Measurements

2006-04-03
2006-01-1390
In this paper the KH-RT and the CAB droplet breakup models are analyzed. The focus is on near nozzle spray simulation data that will be qualitatively compared with results obtained from x-ray experiments. Furthermore, the suitability of the x-ray method for spray studies is assessed and its importance for droplet breakup modeling is discussed. The simulations have been carried out with the Kiva3VRel2 CFD-code into which the KH-RT- and the CAB- droplet breakup models have been implemented. Since the x-ray method gives an integrated line-of-sight mass distribution of the spray, a suitable comparison of the experimental distributions and the simulated ones is made. Additionally, modeling aspects are discussed and the functioning of the models demonstrated by illustrating how the parcel Weber numbers and radii vary spatially. The transient nature of the phenomenon is highlighted and the influence of the breakup model parameters is discussed.
X