Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?

2013-10-15
2013-32-9143
Small gasoline engines are used in motorcycles and handheld machinery, because of their high power density, low cost and compact design. The reduction of hydrocarbon emissions and fuel consumption is an important factor regarding the upcoming emission standards and operational expenses. The scavenging process of the two-stroke engine causes scavenging losses. A reduction in hydrocarbon emissions due to scavenging losses can be achieved through inner mixture formation using direct injection (DI). The time frame for fuel vaporization is limited using two-stroke SI engines by the high number of revolutions. A high pressure DI system was used to offer fast and accurate injections. An injection pressure of up to 140 MPa was provided by a common rail system, built out of components normally used in automotive engineering. A standard electromagnetic injector is applied for the fuel injection. This injection unit is dimensioned for multi-point injections in diesel engines.
Journal Article

Influence of Fuel Composition on Exhaust Emissions of a DISI Engine during Catalyst Heating Operation

2013-10-14
2013-01-2571
Particle number measurements during different real world and legislative driving cycles show that catalyst heating, cold and transient engine operation cause increased particle number emissions. In this context the quality of mixture formation as a result of injector characteristics, in-cylinder flow, operation & engine parameters and fuel composition is a major factor. The goal of this paper is to evaluate the influence of different biogenic and alkylate fuels on the gaseous and particle number emission behavior during catalyst heating operation on a single-cylinder DISI engine. The engine is operated with a late ignition timing causing a high exhaust enthalpy flow to heat up the catalyst, a slightly lean global air fuel ratio to avoid high hydrocarbon emissions and a late injection right before the ignition to reduce the coefficient of variance of the indicated mean effective pressure.
Technical Paper

Comparative Study to Assess the Soot Reduction Potential of Different In-Cylinder Methods and Exhaust Gas Aftertreatment Systems for Direct Injection Diesel Engines

2007-10-29
2007-01-4016
In this study different methods to reduce the soot emissions of Diesel engines were investigated and compared to obtain their soot reduction potential. Apart from investigations on the practically usable engine map area with so called homogeneous charge compression ignition (HCCI) combustion processes a new heterogeneous combustion processes was developed and investigated which offers significantly reduced soot emissions while still applicable in the entire engine map. For the HCCI experiments the emphasis was put on the achievable engine load range when using conventional injector nozzles which still allow a conventional heterogeneous engine operation.
Technical Paper

Experimental Investigations of Two-Stroke SI Combustion with Simultaneous Cycle-Based Fuel Consumption Measurements

2010-09-28
2010-32-0061
Unstable combustion and high cyclic variations of the in-cylinder pressure associated with low engine running smoothness and high emissions are mainly caused by cyclic variations of the fresh charge composition, the variability of the ignition and the fuel mass. These parameters affect the inflammation, the burn rate and thus the whole combustion process. In this paper, the effects of fluctuating fuel mass on the combustion behavior are shown. Small two-stroke engines require special measuring and testing equipment, especially for measuring the fuel consumption at very low fuel flow rates as well as very low fuel supply pressures. To realize a cycle-resolved measurement of the injected fuel mass, fuel consumption measurement with high resolution and high dynamic response is not enough for this application.
Technical Paper

An Experimental Study of Homogeneous Charge Compression Ignition (HCCI) with Various Compression Ratios, Intake Air Temperatures and Fuels with Port and Direct Fuel Injection

2003-06-23
2003-01-2293
A promising approach for reducing both NOx- and particulate matter emissions with low fuel consumption is the so called homogeneous charge compression ignition (HCCI) combustion process. Single-cylinder engine tests were carried out to assess the influence of several parameters on the HCCI combustion. The experiments were performed both with port fuel injection (PFI) and with direct injection (DI) under various compression ratios, intake air temperatures and EGR-rates. Special emphasis was put on the fuel composition by using different gasoline and diesel fuels as well as n-heptane. Besides engine out emissions (CO2, CO, NO, O2, HC, soot) and in-cylinder pressure indication for burning process analysis, the combustion itself was visualised using an optical probe.
Technical Paper

The BPI Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in Spark Ignited Engines

2004-03-08
2004-01-0035
Spark ignited engines with direct injection (DISI) in fuel stratified mode promise an increase in efficiency mainly due to reduced pumping losses at part load. However, the need for expensive lean NOx catalysts may reduce this advantage. Therefore, a Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. It is characterised by a combination of a prechamber spark plug and a piston bowl. An important feature of the concept is its dual injection strategy. A pre injection in the inlet stroke produces a homogeneous lean mixture with an air fuel ratio of λ = 1.5 to λ = 1.7. A second injection with a small quantity of fuel is directed towards the piston bowl during the compression stroke. The enriched air fuel mixture of the piston bowl is transported by the pressure difference between main combustion chamber and prechamber into the prechamber.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Investigations of Mixture Formation and Combustion in Gasoline Direct Injection Engines

2001-09-24
2001-01-3647
The spray propagation and disintegration is investigated in a pressure chamber. With Particle Image Velocimetry the direction and velocity of both, fuel droplets and induced gas flow are detected. By means of shadow photographs the spray cone geometry is visualized. To verify the predictions made of the measurements mentioned above and to rate the quality of the tuning of the parameters in-cylinder gas flow, injection pressure, position of Injector and position of spark plug under real engine conditions, a fast gas sampling valve is used in three different engines. The in-cylinder gas temperature and the soot concentration are measured crank angle resolved by means of the Two-Colour-Method in a 1-cylinder GDI-engine. The soot concentration and temperature show the influence of the injection pressure on emissions like soot and nitric oxide.
Technical Paper

Application of Particle Image Velocimetry for Investigation of Spray Characteristics of an Outward Opening Nozzle for Gasoline Direct Injection

2006-10-16
2006-01-3377
The hollow cone spray from a high pressure outward opening nozzle was investigated inside a pressure vessel by means of particle image velocimetry (PIV). The flow velocities of the air outside the spray were measured via PIV in combination with fluorescent seeding particles and optical filters. The high pressure piezo electric injector has an annular nozzle to provide a hollow cone spray with an angle of about 90°. During injection a very strong and stable vortex structure is induced by the fuel spray. Besides the general spray/air interaction, the investigation of double and triple fuel injections was the main focus of this study.
Technical Paper

Development and Testing of a Diesel Particulate Filter with an Electrical Regeneration Starting Module

2005-10-24
2005-01-3703
Different particulate filter systems with an electrical heating for starting the filter regeneration were designed and tested to evaluate the parameters important for a successful filter and heating device layout. These results led to a new filter system with an improved electrical heating module. Particular emphasis was put on a modular design which allows a separate optimization of the different system parts with regard to function, durability and costs. In this paper the different development steps are presented. Experimental results show the performance and limitations for electrically heated particulate traps. The analysis of the experiments was done on the one hand by using data such as temperatures, pressures and exhaust gas composition during the regeneration. On the other hand the assessment of the regeneration rate was done by weighing the filter and optically with non-destructive and partly destructive methods.
Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Technical Paper

A Study of the In-Nozzle Flow Characteristic of Valve Covered Orifice Nozzles for Gasoline Direct Injection

2005-10-24
2005-01-3684
For spark ignition engines, the most effective way to reduce the overall fuel consumption and CO2 emissions respectively is the implementation of gasoline direct injection technology. In comparison to the current wall and air guided systems, the direct injection system of the second generation - the spray guided DI- is the most promising one with respect to fuel economy and emission. In order to exploit its full potential, a thorough combustion process development regarding injector and spark plug design and their positioning within the combustion chamber is essential. Especially multihole injectors offer many degrees of freedom with regard to the nozzle shape and spray pattern. To reduce the development work and costs necessary to identify the ideal nozzle characteristic and spray pattern, reliable CFD models are necessary.
Technical Paper

Investigations on Soot Emission Behavior of A Common-Rail Diesel Engine during Steady and Non-Steady Operating Conditions by Means of Several Measuring Techniques

2005-05-11
2005-01-2154
In this work the influence of various engine load changes with different engine speeds on the soot particle concentrations and properties was investigated because these operating modes are well known for short but high soot emissions. To derive specific information on emission behavior of particle matters tests were carried out with the Two-Color-Method and the so called RAYLIX technique in a four-cylinder CR-Diesel engine. The Two-Color-Method (2CM) gives crank angle resolved information about soot formation and oxidation processes inside the combustion chamber of a single cylinder. The RAYLIX technique is a combination of Rayleigh-scattering, Laser-Induced-Incandescence (LII) and extinction measurements which enable simultaneous measurements of temporally and spatially resolved soot concentration, mean primary particle radii and number densities in the exhaust gas manifold of the same cylinder investigated by the Two-Color-Method.
Technical Paper

Novel Rankine Cycle for Hybrid Vehicles

2018-09-10
2018-01-1711
The European Union (EU) has defined legally-binding targets for the fleet of new cars allowing 95 grams CO2 per kilometer in 2021. It is already under discussion to reduce average emissions of the EU car fleet by further 15% in 2025 and again by 30% in 2030 compared to 2021 goal. Therefore, improvement of fuel economy is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future fuel economy targets without further development of additional measures. This paper presents the analysis of a Rankine cycle unit applied to improve the overall efficiency of a hybrid electric vehicle (HEV). The authors propose a new concept for recovering a considerable part of exhaust waste heat from an HEV with spark ignition internal combustion engine (ICE) by applying a bottoming Rankine cycle with a Ruths storage tank.
Technical Paper

Influence of High Frequency Ignition on the Combustion and Emission Behaviour of Small Two-Stroke Spark Ignition Engines

2013-10-15
2013-32-9144
The two-stroke SI engine is the predominant driving unit in applications that require a high power-to-weight ratio, such as handheld power tools. Regarding the latest regulations in emission limits the main development area is clearly a further reduction of the exhaust emissions. The emissions are directly linked to the combustion processes and the scavenging losses. The optimization of the combustion processes, which represents one of the most challenging fields of research, is still one of the most important keys to enhance the thermal efficiency and reduce exhaust emissions. Regarding future emission regulations for small two-stroke SI engines it is inevitable that the emissions of gases causing the greenhouse effect, like carbon dioxide, need to be reduced. As most small SI engines are carburetted and operate open loop, the mixture formation and the amount of residual gas differs from cycle to cycle [1].
X