Refine Your Search

Topic

Author

Search Results

Journal Article

Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications

2015-04-14
2015-01-0866
Scarce resources of fossil fuels and increasingly stringent exhaust emission legislation push towards a stronger focus to alternative fuels. Natural gas is considered a promising solution for small engines and passenger cars due to its high availability and low carbon dioxide emissions. Furthermore, natural gas indicates great potential of increased engine efficiency at lean-burn operation. However, the ignition of these lean air/fuel mixtures leads to new challenges, which can be met by fuel scavenged prechambers. At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen an air cooled natural gas engine with a single cylinder displacement volume of 0.5 L is equipped with a methane scavenged prechamber for investigations of the combustion process under real engine conditions. The main combustion chamber is supplied with a lean premixed air/fuel mixture.
Journal Article

Achieving Very Low PN Emissions with an Advanced Multi-Hole Injector Functionality and Adapted Spray Targeting Under High Fuel Pressure Conditions

2014-10-13
2014-01-2605
In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Effect of Form Honing on Piston Assembly Friction

2020-05-29
2020-01-5055
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Journal Article

Heat Release Calculation of Internal Combustion Engines by Analyzing the Flame Radiation with Crankshaft Angle Resolution

2017-03-28
2017-01-0787
Improving efficiency and reducing emissions are the principal challenges in developing new generations of internal combustion engines. Different strategies such as downsizing or sophisticated after-treatment of exhaust gases are pursued. Another approach aims at optimizing the parameterization of the engine. Correct adjustments of ignition timings, waste gate position and other factors have significant influence on the combustion process. A multitude of application data is generated during the development process to predefine appropriate settings for most situations. Improvements in regards to the application effort and the quality of the settings can be achieved by measuring the combustion process and optimizing the parametrization in a closed loop. However, cylinder pressure sensors that are used during the development process are too expensive for series applications.
Technical Paper

Using a Phenomenological Simulation Approach for the Prediction of a Dual-Fuel Pilot Injection Combustion Process

2020-03-10
2020-01-5013
Development processes for modern combustion engines already make substantial use of more or less sophisticated simulation approaches. The enhancement of computational resources additionally allows the increasing use of simulation tools in terms of time-consuming three-dimensional CFD approaches. In particular, the preliminary estimation of feasible operating ranges and strategies requires a vast multitude of single simulations. Here, multi-zone simulation approaches incorporate the advantages of comparably short simulation durations. Nevertheless, the combination with more detailed sub-models allows these rather simple modeling approaches to offer considerable insight into relevant engine operation phenomena. In the context of combustion process development, this paper describes a phenomenological model approach for the prediction of operating point characteristics of a dual-fuel pilot injection combustion process.
Journal Article

Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx

2012-04-16
2012-01-1078
In this project funded by the Bayerische Forschungsstiftung two fundamental investigations had been carried out: first a new N-rich liquid ammonia precursor solution based on guanidine salts had been completely characterized and secondly a new type of side-flow reactor for the controlled catalytic decomposition of aqueous NH₃ precursor to ammonia gas has been designed, applied and tested in a 3-liter passenger car diesel engine. Guanidine salts came into the focus due to the fact of a high nitrogen-content derivate of urea. Specially guanidinium formate has shown extraordinary solubility in water (more than 6 kg per 1 liter water at room temperature) and therefore a possible high ammonia potential per liter solution compared to the classical 32.5% aqueous urea solution (AUS32) standardized in ISO 22241 and known as DEF (diesel emission fluid), ARLA32 or AdBlue® .
Technical Paper

Development of High Thermal Efficiency and Small-Size Gas Engine System Using Biomass Gas Fuel

2007-07-23
2007-01-2042
Biomass is one of the attractive alternative fuels, which exists dispersively. Small size gas engine power generation with gasification biomass gas is one of the efficient methods. However, since its calorific value is lower and its composition can be affected by gasifying conditions, it is difficult to stabilize and achieve high thermal efficiency engine operation. This study aims to develop a small size gas engine system with biomass gas by modifying the control system of a conventional spark ignition engine. In this paper, effect of fuel composition on combustion was clarified experimentally to get guideline for the engine control system.
Technical Paper

Analysis and Modeling of Heat Transfer in the SI Engine Exhaust System During Warm-Up

2007-04-16
2007-01-1092
In order to meet the severe emission restrictions imposed by SULEV and EURO V standards the catalytic converter must reach light-off temperature during the first 20 seconds after engine cold start. Thermal losses in the exhaust manifold are driven by the heat transfer of the pulsating and turbulent exhaust flow and affect significantly the warm-up time of the catalyst. In the present paper an investigation concerning the gas-side heat transfer in the exhaust system of a spark ignited (SI) combustion engine with retarded ignition timing and secondary air injection into the exhaust port is reported. Based on this analysis, the warm-up simulation of a one-dimensional flow simulation tool is improved for an evaluation of different exhaust system configurations.
Technical Paper

Numerical Analysis of Auto Ignition and Combustion of n-Butane and Air Mixture in the Homogeneous Charge Compression Ignition Engine by Using Elementary Reactions

2003-03-03
2003-01-1090
The combustion mechanism of the homogeneous charge compression ignition (HCCI) engine has been investigated by numerical calculations. Calculations were carried out using n-butane/air elementary reactions at 0 dimension and adiabatic condition to simplify the understanding of chemical reaction mechanisms in the HCCI engine without complexities of walls, crevices, and mixture inhomogeneities. n-Butane is the fuel with the smallest carbon number in the alkane family that shows two-stage auto-ignition, heat release with low temperature reaction (LTR) and high temperature reaction (HTR), similar to higher hydrocarbons such as gasoline at HCCI combustion. The CHEMKIN II code, SENKIN and kojima's n-butane elementary reaction scheme were used for the calculations. This paper consists of three main topics. First, the heat release mechanisms of the HCCI engine were investigated. The results show that heat release with LTR is HCHO oxidation reactions.
Technical Paper

An Efficient Test Methodology for Combustion Engine Testing: Methods for Increasing Measurement Quality and Validity at the Engine Test Bench

2017-03-28
2017-01-0604
Improving fuel efficiency while meeting relevant emission limits set by emissions legislation is among the main objectives of engine development. Simultaneously the development costs and development time have to be steadily reduced. For these reasons, the high demands in terms of quality and validity of measurements at the engine test bench are continuously rising. This paper will present a new methodology for efficient testing of an industrial combustion engine in order to improve the process of decision making for combustion-relevant component setups. The methodology includes various modules for increasing measurement quality and validity. Modules like stationary point detection to determine steady state engine behavior, signal quality checks to monitor the signal quality of chosen measurement signals and plausibility checks to evaluate physical relations between several measurement signals ensure a high measurement quality over all measurements.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

Experimental Investigation of Orifice Design Effects on a Methane Fuelled Prechamber Gas Engine for Automotive Applications

2017-09-04
2017-24-0096
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
Technical Paper

Calculation of the Piston Assembly Friction: Classification, Validation and Interpretation

2012-04-16
2012-01-1323
This SAE Technical Paper contains detailed data which are relevant for the calculation of the friction forces of the piston assembly in internal combustion engines. Useful ways of employing calculations besides measurements are exactly classified for the optimization of the piston assembly system in order to reduce friction losses. In the first step the theoretical basics for the calculation of the tribological system are introduced. Referring to the theory, the paper goes into detail about the basic set-up and the modeling degree of the calculation program. Furthermore, measured and calculated curves of friction forces are compared for different operating points. In addition, analysis of the crank-angle resolved friction force are presented with varying engine speeds, oil temperatures and loads and a detailed interpretation of the results is given.
Technical Paper

Development of a Model-Based HCCI Control Strategy for an Engine with a Fully Variable Valve Train

2013-04-08
2013-01-1667
This paper discusses research activities at the Technische Universität München on the HCCI combustion process, focusing on the development of a model-based control concept with pressure indication. As a first step sensitivity analyses have been carried out to investigate influences of different injection strategies on the combustion and emission characteristics. An optimal injection strategy has been determined and reasonable control variables and ranges corresponding to this strategy were defined. Comprehensive steady-state measurements have been conducted to detect the engine characteristics. In order to limit the experimental effort, principles of DoE (Design of Experiments) have been used to define a methodological approach in the planning of the measurements. Afterwards a multiple-input multiple-output engine model including boundary models for input settings has been designed out of the measurement results.
Technical Paper

Development of a Hydraulic Hybrid System for Urban Traffic

2013-04-08
2013-01-1479
The development of today's powertrains focuses on the reduction of CO₂ emissions. Therefore several new technologies for internal combustion engines have been established. A further tendency is the successive electrification of powertrains in hybrid vehicles. However, these trends lead to increasing system costs which are a very important aspect at the market segment of compact cars. At the Institute of Internal Combustion Engines of the Technical University of Munich a drivetrain concept for urban and commuter traffic is under development. It is based on a lean-burn air-cooled two-cylinder natural gas engine which is combined with a hydraulic hybrid system. The paper contains detailed information about the engine as well as the hybrid vehicle powertrain in parallel structure. Particular characteristics and innovations of the hydraulic hybrid system compared to systems known so far are shown.
Technical Paper

Development of Dynamic Models for an HCCI Engine with Fully Variable Valve-Train

2013-04-08
2013-01-1656
For the next stage of Homogeneous Charge Compression Ignition (HCCI) engine researches, the development of an engine controller, taking account of dynamics is required. The objective of this paper is to develop dynamic multi input and multi output HCCI engine models and a controller to deal with variable valve lift, variable valve phase, and fuel injection. First, a physical continuous model has been developed. This model mainly consists of air flow models, an ignition model, and a combustion and mechanical model of the engine. The flow models use a receiver model on volumetric elements such as an intake manifold and a valve flow model on throttling elements such as intake valves. Livengood-wu integration of Arrhenius function is used to predict ignition timing. The combustion duration is expressed as a function of ignition timings.
Technical Paper

Study on Auto-Ignition and Combustion Mechanism of HCCI Engine

2004-09-27
2004-32-0095
In the HCCI (Homogeneous Charge Compression Ignition) engine, a mixture of fuel and air is supplied to the cylinder and auto-ignition occurs resulting from compression. This method can expand the lean flammability limit, realizing smokeless combustion and also having the potential for realizing low NOx and high efficiency. The optimal ignition timing is necessary in order to keep high thermal efficiency. The Ignition in the HCCI engine largely depends on the chemical reaction between the fuel and the oxidizer. Physical methods in conventional engines cannot control it, so a chemical method is demanded. Combustion duration is maintained properly to avoid knocking. In addition, the amount of HC and CO emissions must be reduced. The objective of this study is to clarify the following through calculations with detailed chemical reactions and through experiment with the 2-stroke HCCI engine: the chemical reaction mechanism, and HC and CO emission mechanisms.
Technical Paper

The Potential of Gasoline Fueled Pre Chamber Ignition Combined with Elevated Compression Ratio

2020-04-14
2020-01-0279
Pre-chamber ignition is a method to simultaneously increase the thermal efficiency and to meet ever more stringent emission regulations at the same time. In this study, a single cylinder research engine is equipped with a tailored pre-chamber ignition system and operated at two different compression ratios, namely 10.5 and 14.2. While most studies on gasoline pre-chamber ignition employ port fuel injection, in this work, the main fuel quantity is introduced by side direct injection into the combustion chamber to fully exploit the knock mitigation effect. Different pre-chamber design variants are evaluated considering both unfueled and gasoline-fueled operation. As for the latter, the influence of the fuel amount supplied to the pre-chamber is discussed. Due to its principle, the pre-chamber ignition system increases combustion speeds by generating enhanced in-cylinder turbulence and multiple ignition sites. This property proves to be an effective measure to mitigate knocking effects.
X