Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Impact of Thermal Management of the Three-Way Catalyst on the Energy Efficiency of a P2 Gasoline FHEV

2020-06-30
2020-37-0019
Gasoline Full Hybrid Electric Vehicles (FHEVs) are considered among good candidates as cost-effective solution to comply with upcoming emissions legislation. However, several studies have highlighted that frequent start-and-stops worsen the hydrocarbon tailpipe emissions, especially when the light-off temperature of the three-way catalyst (TWC) has not been reached. In fact, strategies only addressing the minimization of fuel consumption tend to delay engine activation and hence TWC warming, especially during urban driving. Goal of the present research is therefore to develop an on-line powertrain management strategy accounting also for TWC temperature, in order to reduce the time needed to reach TWC light-off temperature. A catalyst model is incorporated into the model of the powertrain where torque-split is performed by an adaptive equivalent consumption minimization strategy (a-ECMS).
Technical Paper

3D Unsteady Modelling of the Loading Process in a Diesel Engine PM-Filter

2007-04-16
2007-01-1132
Particulate Matter (PM) filters are becoming a standard component of Diesel engines exhaust aftertreatment devices to comply with the forthcoming engine emission regulations. However, cost reduction and durability are still critical issues in particular for the integration of the PM-filter with other components of the after-treatment system (e.g. pre-turbo-catalyst, close-coupled-catalyst, PM-filter, SCR). To respect functional (available temperature and gas composition) and space restraints, very complex shapes may result from the design causing tortuous flow patterns and influencing the flow distribution into the PM-filter. Uneven soot distributions in the filter may cause a non-homogeneous development of filter regeneration, leading to failures, for example due to the occurrence of large temperature gradients during the oxidation of soot deposits.
Technical Paper

Cell Shape Influence on Mass Transfer and Backpressure Losses in an Automotive Catalytic Converter

2004-06-08
2004-01-1837
The development of catalytic converter systems for automotive applications is, to a great extent, related to monolith catalyst support materials and design. In this paper improvements of converter channels fluid-dynamics aiming to enhance pollutant conversion in all the engine operating conditions are investigated with respect to the role of channel cross-section shape on mass and heat transfer processes. The performances of different channel sections, characteristic of ceramic and metallic monoliths, have been compared by two strategies (respectively equal cell density and equal hydraulic diameter). The results have been examined in terms of mass conversion efficiency, thermal behavior and single channel backpressure for coated and non coated single channels. 3D numerical simulations have been used as an analysis tool to give a detailed insight of in-channel phenomena. Classical shapes have been analyzed and their relative performances are reported.
Technical Paper

Design Techniques to Improve the Performances of Metal Supported Flow-Through Particulate Traps: an Experimental and Numerical Approach

2001-09-23
2001-24-0061
Soot filtration represents a major problem for the complete exploiting of Diesel engines characteristics in terms of global efficiency and CO2 emissions. Even though the engines development in the last years let the engine performances improve, exhaust gas after treatment is still required to respect the foreseen limits for soot and NOx emissions. A flow-through particle trap has been presented with a great potential in soot removal without major penalties in terms of exhaust back pressure. The device performance is strictly connected to channel geometry. This paper deals with that relation by means of an experimental-numerical approach.
Technical Paper

A Mixed Numerical-Experimental Analysis Procedure for Non-Blocking Metal Supported Soot Trap Design

2002-10-21
2002-01-2782
Metal based Diesel Particulate Filters (PM-TRAPs) could represent a short time solution to face with particulate (and NOx) emissions with a small influence on CO2 emission. In fact, the operation principle of the PM-TRAP, based on fluid dynamical behavior of exhaust flow in “ad hoc” shaped geometries, allows to separate the particle content of exhaust-gases but needs to be carefully assessed to optimize filter performances. In this paper a mixed numerical and experimental procedure has been developed; it allows to finely tune the design parameters which can be used to achieve pre-defined targets in terms of particulate matter and fuel consumption. By adopting the previously declared procedure, a PM-TRAP “optimal” geometry has been chosen. Its performance has been verified with respect to experimental data. Results are encouraging and suggest further development of the system.
Technical Paper

ExhAUST: DPF Model for Real-Time Applications

2011-09-11
2011-24-0183
Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model.
Technical Paper

Model Based Design Procedure of After Treatment Systems for Non-Road Diesel Engines

2011-09-11
2011-24-0186
In 2011-2013, regulations will be tightened for non-road vehicles, via the application of Stage III-B standards in Europe. With state-of-the-art technology (high pressure common rail, cooled EGR), non-road diesel engines will require DPFs to control PM, as 90% reduction is requested with respect to STAGE III-A standards. Additional challenges may also foresee the obtainment of STAGE III-B standards with STAGE III-A engine technology, by means of retrofit systems for PM control. In that case, retrofit systems must furthermore guarantee simple control systems, and must be robust especially in terms of limited back pressure increase during normal operation. Moreover, retrofit systems must offer flexibility from the design point of view, in order to be correctly operated with several engines of same class, possibly characterized by totally different PM flow rates, temperature, NOx and O₂ availability.
Technical Paper

Particle Number Emissions: An Analysis by Varying Engine/Exhaust-System Design and Operating Parameters

2011-09-11
2011-24-0170
An increasing concern has been growing in the last years toward health effects due to Particulate Matter (PM) emissions. This triggered the widespread diffusion of Diesel Particulate Filters (DPFs), which equip almost every Diesel car and truck on the market, allowing to get large reduction (in the order of 95% and more) in terms of PM mass. However, PM health effects are believed to be more related to particle number rather than to particle mass. This gave rise in Europe to new regulations for passenger cars on total particle number, that will be introduced from EURO6 on. Engine/Exhaust-System assembly is therefore under investigation, to better understand the effectiveness of aftertreatment components toward particle number reduction, especially by varying engine and exhaust-system design/operating conditions, and to compare particle number emissions to particle mass emissions.
Technical Paper

Advanced Modeling of Diesel Particulate Filters to Predict Soot Accumulation and Pressure Drop

2011-09-11
2011-24-0187
Diesel particulate filters (DPFs) are recognized as the most efficient technology for particulate matter (PM) reduction, with filtration efficiencies in excess of 90%. Design guidelines for DPFs typically are: high removal efficiency, low pressure drop, high durability and capacity to resist high temperature excursions during regeneration events. The collected mass inside the trap needs to be periodically oxidized to regenerate the DPF. Thus, an in-depth understanding of filtration and regeneration mechanisms, together with the ability of predicting actual DPF conditions, could play a key role in optimizing the duration and number of regeneration events in case of active DPFs. Thus, the correct estimation of soot loading during operation is imperative for effectively controlling the whole engine-DPF assembly and simultaneously avoidingany system failure due to a malfunctioning DPF. A viable way to solve this problem is to use DPF models.
Technical Paper

Effects of Biodiesel Distillation Process of Waste Cooking Oil Blends on DPF Behavior

2012-09-10
2012-01-1663
The use of biodiesel has been widely accepted as an effective solution to reduce greenhouse emissions. The high potential of biodiesel in terms of PM emission reduction may represent an additional motivation for its wide use. This potential is related to the oxygenated nature of biodiesel, as well as its lower PAH and S, which leads, in general, to lower PM emissions as well as equal or slightly higher NOx emissions. According to these observations a different behavior of the Aftertreatment System (AS), especially as far as control issues of the Diesel Particulate Filter are concerned is also expected. The competition with the food sector is currently under debate, thus, besides second generation biofuels (e.g. from algae), the transesterification of Waste Cooking Oil (WCO) is another option, however needing further insight.
Technical Paper

Diesel Engine Biofuelling: Effects of Ash on the Behavior of the Diesel Particulate Filter

2013-09-08
2013-24-0165
The use of biodiesels is an effective way to limit greenhouse emissions and partly limit the dependence on fossil primary sources. Biodiesel fuels also show interesting features in terms of PM-NOx emissions trade-off that appears more favorable toward an optimized control of the Diesel Particulate Filter (DPF). In fact, the DPF, which is the assessed aftertreatment technology to reduce PM emissions below the limits, suffers from fuel consumption penalization or excessive exhaust system backpressure, as a function of the frequency of the regeneration process. On the other side, issues such as the impact of the higher ash content of biodiesel on the DPF performance have also to be better understood. In the given scenario, an experimental study on a DEUTZ 4L off-road Diesel engine coupled to a DOC-DPF (Diesel Oxidation Catalyst-Diesel Particulate Filter) system is proposed in this paper.
Technical Paper

Fuel Cell Hybrid Electric Vehicle Control: Driving Pattern Recognition Techniques to Improve Vehicle Energy Efficiency

2023-08-28
2023-24-0147
Hydrogen technologies have been widely recognized as effective means to reduce Greenhouse Gases emissions, a crucial issue to target a Carbon-free world aimed by the European Green Deal. Within the road transport sector, electric vehicles with a hybrid powertrain, including battery packs and hydrogen Fuel Cells (FCs), are gaining importance owing to their adaptability to a wide variety of applications, high driving mileages and short refueling times. The control strategy is crucial to achieve a proper management of the energy flows, to maximize energy efficiency and maximize components durability and state of health. This work is focused on the design of an integrated Energy Management Strategy (EMS), whose aim is to minimize the hydrogen consumption, by operating the FC mainly in the high efficiency region while the battery pack works according to a charge sustaining mode. The proposed EMS is composed of a control algorithm and a supervisor.
Technical Paper

Fuel Cell Hybrid Electric Vehicle: Validated Fuel Cell and Battery Pack Model to Enhance Reliability in Performance Predictions

2024-04-09
2024-01-2188
In the face of the pressing climate crisis, a pivotal shift towards sustainability is imperative, particularly in the transportation sector, which contributed to nearly 22% of global Greenhouse Gas emissions in 2021. In this context, diversifying energy sources becomes paramount to prevent the collapse of sustainable infrastructure and harness the advantages of various technologies, such as Fuel Cell (FC) Hybrid Electric Vehicles. These vehicles feature powertrains comprising hydrogen FC stacks and battery packs, offering extended mileage, swift refueling times, and rapid dynamic responses. However, realizing these benefits hinges upon the adoption of a rigorously validated simulation platform capable of accurately forecasting vehicle performance across diverse design configurations and efficient Energy Management Strategies. Our study introduces a comprehensive microcar hybrid prototype model, encompassing all subsystems and auxiliaries.
Technical Paper

Fuel Cell Hybrid Electric Vehicle: An Integrated Approach for Sub-Optimal Controller in Real-Time Application

2024-04-09
2024-01-2187
Hydrogen technologies are among the main candidates to reduce carbon emissions in the automotive transport sector. Among the innovative solutions, Electric Vehicles (EVs) featuring hybrid powertrains, combining battery packs and hydrogen Fuel Cell (FC) stacks, are gaining prominence in our pursuit of sustainability objectives. Nonetheless, realizing the full potential of these hybrid vehicles hinges on the implementation of efficient Energy Management Strategies (EMS). In this study, we present an integrated EMS approach to achieve extended driving ranges and reduced energy consumption. This is achieved primarily by operating the FC within its high-efficiency range, while ensuring that the battery packs operate in a charge-sustaining mode. The EMS is crafted through an adaptive algorithm that takes into account various driving conditions to establish the most suitable sub-optimal control strategy.
X