Refine Your Search

Topic

Search Results

Journal Article

Well-To-Wheels Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

2009-04-20
2009-01-1309
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model incorporated fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). Based on PSAT simulations of the blended charge depleting (CD) operation, grid electricity accounted for a share of the vehicle’s total energy use ranging from 6% for PHEV 10 to 24% for PHEV 40 based on CD vehicle mile traveled (VMT) shares of 23% and 63%, respectively. Besides fuel economy of PHEVs and type of on-board fuel, the type of electricity generation mix impacted the WTW results of PHEVs, especially GHG emissions.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Journal Article

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment

2015-04-14
2015-01-0342
It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
Technical Paper

Real-world Evaluation of National Energy Efficiency Potential of Cold Storage Evaporator Technology in the Context of Engine Start-Stop Systems

2020-04-14
2020-01-1252
National concerns over energy consumption and emissions from the transportation sector have prompted regulatory agencies to implement aggressive fuel economy targets for light-duty vehicles through the U.S. National Highway Traffic Safety Administration/Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) program. Automotive manufacturers have responded by bringing competitive technologies to market that maximize efficiency while meeting or exceeding consumer performance and comfort expectations. In a collaborative effort among Toyota Motor Corporation, Argonne National Laboratory (ANL), and the National Renewable Energy Laboratory (NREL), the real-world savings of one such technology is evaluated. A commercially available Toyota Highlander equipped with two-phase cold storage technology was tested at ANL’s chassis dynamometer testing facility.
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Journal Article

Comparison of Powertrain Configuration for Plug-in HEVs from a Fuel Economy Perspective

2008-04-14
2008-01-0461
With the success of hybrid electric vehicles (HEVs) and the still uncertain long-term solution for vehicle transportation, Plug-in Hybrid Electric Vehicles (PHEV) appear to be a viable short-term solution and are of increasing interest to car manufacturers. Like HEVs, PHEVs offer two power sources that are able to independently propel the vehicle. They also offer additional electrical energy onboard. In addition to choices about the size of components for PHEVs, choices about powertrain configuration must be made. In this paper, we consider three potential architectures for PHEVs for 10- and 40-mi All Electric Range (AER) and define the components and their respective sizes to meet the same set of performance requirements. The vehicle and component efficiencies in electric-only and charge-sustaining modes will be assessed.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Technical Paper

Midsize and SUV Vehicle Simulation Results for Plug-In HEV Component Requirements

2007-04-16
2007-01-0295
Because Plug-in Hybrid Electric Vehicles (PHEVs) substitute electrical power from the utility grid for fuel, they have the potential to reduce petroleum use significantly. However, adoption of PHEVs has been hindered by expensive, low-energy batteries. Recent improvements in Li-ion batteries and hybrid control have addressed battery-related issues and have brought PHEVs within reach. The FreedomCAR Office of Vehicle Technology has a program that studies the potential benefit of PHEVs. This program also attempts to clarify and refine the requirements for PHEV components. Because the battery appears to be the main technical barrier, both from a performance and cost perspective, the main efforts have been focused on that component. Working with FreedomCAR energy storage and vehicle experts, Argonne National Laboratory (Argonne) researchers have developed a process to define the requirements of energy storage systems for plug-in applications.
Technical Paper

Evolution of Hydrogen Fueled Vehicles Compared to Conventional Vehicles from 2010 to 2045

2009-04-20
2009-01-1008
Fuel cell vehicles are undergoing extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and there is limited demand for hydrogen at present, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. This paper compares the fuel economy potential of hydrogen powertrains to conventional gasoline vehicles. Several timeframes are considered: 2010, 2015, 2030, and 2045. To address the technology status uncertainty, a triangular distribution approach was implemented for each component technology. The fuel consumption and cost of five powertrain configurations will be discussed and compared with the conventional counterpart.
Technical Paper

Methodology and Analysis of Determining Plug-In Hybrid Engine Thermal State and Resulting Efficiency

2009-04-20
2009-01-1308
Testing plug-In hybrid vehicles over standardized and real world drive cycles has shown relatively large efficiency differences between ambient cold starts and hot starts(1,2) (CS/HS). This variation is dependent upon the drive cycle and powertrain architecture, and is significant in magnitude. Quantifying this inefficiency is non-trivial as charge-depleting modes, coupled with vehicle calibration sensitivity, consume small portions of fuel resulting in test variations in which thermal effects cannot be decoupled from slight calibration changes that mask thermal influences. In this paper, a methodology for modeling and analyzing the fuel efficiency of a plug-in hybrid vehicle powertrain as a function of the engine operating temperature will be presented. Response surface methodology (RSM) techniques have been applied to generate brake specific fuel consumption (BSFC) maps as a function of the engine thermal state indicated by crankcase oil temperature.
Technical Paper

Tahoe HEV Model Development in PSAT

2009-04-20
2009-01-1307
Argonne National Laboratory (Argonne) and Idaho National Laboratory (INL), working with the FreedomCAR and Fuels Partnership, lead activities in vehicle dynamometer and fleet testing as well as in modeling activities. By using Argonne’s Advanced Powertrain Research Facility (APRF), the General Motors (GM) Tahoe 2-mode was instrumented and tested in the 4-wheel-drive test facility. Measurements included both sensors and controller area network (CAN) messages. In this paper, we describe the vehicle instrumentation as well as the test results. On the basis of the analysis performed, we discuss the vehicle model developed in Argonne’s vehicle simulation tool, the Powertrain System Analysis Toolkit (PSAT), and its comparison with test data. Finally, on-road vehicle data, performed by INL, is discussed and compared with the dynamometer results.
Technical Paper

Prospects on Fuel Economy Improvements for Hydrogen Powered Vehicles

2008-10-06
2008-01-2378
Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered.
Technical Paper

Modeling the Hybridization of a Class 8 Line-Haul Truck

2010-10-05
2010-01-1931
Hybrid electric vehicles have demonstrated their ability to significantly reduce fuel consumption for several medium- and heavy-duty applications. In this paper we analyze the impact on fuel economy of the hybridization of a tractor-trailer. The study is done in PSAT (Powertrain System Analysis Toolkit), which is a modeling and simulation toolkit for light- and heavy-duty vehicles developed by Argonne National Laboratory. Two hybrid configurations are taken into account, each one of them associated with a level of hybridization. The mild-hybrid truck is based on a parallel configuration with the electric machine in a starter-alternator position; this allows start/stop engine operations, a mild level of torque assist, and a limited amount of regenerative braking. The full-hybrid truck is based on a series-parallel configuration with two electric machines: one in a starter-alternator position and another one between the clutch and the gearbox.
Technical Paper

Integration of a Modal Energy and Emissions Model into a PNGV Vehicle Simulation Model, PSAT

2001-03-05
2001-01-0954
This paper describes the integration of a Modal Energy and Emissions Model (MEEM) into a hybrid-electric vehicle simulation model, the PNGV System Analytic Toolkits (PSAT). PSAT is a forward-looking computer simulation model for advanced-technology vehicles. MEEM is a vehicle fuel-consumption and emissions model developed by one of the authors for internal-combustion-engine (ICE) -powered vehicles. MEEM engine simulation module uses a power-demand physical model based on a parameterized analytical representation of engine fuel and emissions production. One major advantage of MEEM is that it does not rely on steady-state engine maps, which are usually not available for most production vehicles; rather, it depends on a list of engine parameters that are calibrated based on regular vehicle dynamometer testing. The integrated PSAT-MEEM model can be used effectively to predict fuel consumption and emissions of various ICE-powered vehicles with both conventional and hybrid power trains.
Technical Paper

Honda Insight Validation Using PSAT

2001-08-20
2001-01-2538
Argonne National Laboratory (ANL), working with the Partnership for a New Generation of Vehicles (PNGV), maintains hybrid vehicle simulation software: the PNGV System Analysis Toolkit (PSAT). The importance of component models and the complexity involved in setting up optimized control strategies require validation of the models and controls developed in PSAT. Using ANL's Advanced Powertrain Test Facilities (APTF), more than 50 tests on the Honda Insight were used to validate the PSAT drivetrain configuration. Extensive instrumentation, including the half-shaft torque sensor, provides the data needed for through comparison of model results and test data. In this paper, we will first describe the process and the type of test used to validate the models. Then we will explain the tuning of the simulated vehicle control strategy, based on the analysis of the differences between test and simulation.
Technical Paper

The New PNGV System Analysis Toolkit PSAT V4.1 - Evolution and Improvement

2001-08-20
2001-01-2536
Argonne National Laboratory (ANL), working with the Partnership for a New Generation of Vehicles (PNGV), maintains hybrid vehicle simulation software, the PNGV System Analysis Toolkit (PSAT). PSAT, originally proprietary, has been used by both DOE and the “Big Three” as a modeling tool. The number of PSAT users has increased recently because 15 universities participating in the 2001 FutureTruck competition were given the software for their use. PSAT allows companies to look at new types of vehicles (hybrids) and choose the best configuration according to customer expectations within a minimum of time. PSAT, a forward-looking model, allows the user to simulate a large number of different configurations (conventional, series, parallel, and power split). PSAT is well suited for development of control strategies; by using accurate dynamics component models as its code, PSAT can be implemented directly and tested at the bench scale or in a vehicle.
Technical Paper

Axial Flux Variable Gap Motor: Application in Vehicle Systems

2002-03-04
2002-01-1088
Alternative electric motor geometry with potentially increased efficiency is being considered for hybrid electric vehicle applications. An axial flux motor with a dynamically adjustable air gap (i.e., mechanical field weakening) has been tested, analyzed, and modeled for use in a vehicle simulation tool at Argonne National Laboratory. The advantage of adjusting the flux is that the motor torque-speed characteristics can better match the vehicle load. The challenge in implementing an electric machine with these qualities is to develop a control strategy that takes advantage of the available efficiency improvements without using excessive energy to mechanically adjust the air gap and thus reduce the potential energy savings. Motor efficiency was mapped in terms of speed, torque, supply voltage, and rotor-to-stator air gap.
Technical Paper

Model-Based Fuel Economy Technology Assessment

2017-03-28
2017-01-0532
Many leading companies in the automotive industry have been putting tremendous amount of efforts into developing new designs and technologies to make their products more energy efficient. It is straightforward to evaluate the fuel economy benefit of an individual technology in specific systems and components. However, when multiple technologies are combined and integrated into a whole vehicle, estimating the impact without building and testing an actual vehicle becomes very complex, because the efficiency gains from individual components do not simply add up. In an early concept phase, a projection of fuel efficiency benefits from new technologies will be extremely useful; but in many cases, the outlook has to rely on engineer’s insight since it is impractical to run tests for all possible technology combinations.
Technical Paper

Potential Cost Savings of Combining Power and Energy Batteries in a BEV 300

2016-04-05
2016-01-1213
Present-day battery technologies support a battery electric vehicle with a 300mile range (BEV 300), but the cost of such a vehicle hinders its large-scale adoption by consumers. The U.S. Department of Energy (DOE) has set aggressive cost targets for battery technologies. At present, no single technology meets the cost, energy, and power requirements of a BEV 300, but a combination of multiple batteries with different capabilities might be able to lower the overall cost closer to the DOE target. This study looks at how such a combination can be implemented in vehicle simulation models and compares the vehicle manufacturing and operating costs to a baseline BEV 300. Preliminary analysis shows an opportunity to modestly reduce BEV 300 energy storage system cost by about 8% using a battery pack that combines an energy and power battery. The baseline vehicle considered in the study uses a single battery sized to meet both the power and energy requirements of a BEV 300.
Technical Paper

Model Validation of the Honda Accord Plug-In

2016-04-05
2016-01-1151
This paper presents the validation of an entire vehicle model of the Honda Accord Plug-in Hybrid Electric Vehicle (PHEV), which has a new powertrain system that can be driven in both series and parallel hybrid drive using a clutch, including thermal aspects. The Accord PHEV is a series-parallel PHEV with about 21 km of all-electric range and no multi-speed gearbox. Vehicle testing was performed at Argonne’s Advanced Powertrain Research Facility on a chassis dynamometer set in a thermal chamber. First, components (engine, battery, motors and wheels) were modeled using the test data and publicly available assumptions. This includes calibration of the thermal aspects, such as engine efficiency as a function of coolant temperature. In the second phase, the vehicle-level control strategy, especially the energy management, was analyzed in normal conditions in both charge-depleting and charge-sustaining modes.
X