Refine Your Search

Topic

Search Results

Technical Paper

The Variation of Functional Characteristics of a Euro VI Selective Catalytic Reduction Reactor after Ageing

2020-09-15
2020-01-2205
The selective catalytic reduction (SCR) of nitrogen oxides by ammonia is commonly applied as a method of exhaust aftertreatment for lean burn compression ignition (CI) engines. The catalytic reactor of an SCR system, like all catalytic emission control devices, is susceptible to partial deactivation as its operating time progresses. Long-term exposure of an SCR reactor to exhaust gas of fluctuating temperature and composition results in variations of the characteristics of its catalytically active layer. The aim of this study was to observe and investigate the variation of parameters characterizing the SCR reactor as a result of its ageing. Attention was paid to changes in ammonia storage capacity, selectivity of chemical reactions and maximum achievable NOx conversion efficiency. The experimental setup was a heavy duty (HD) Euro VI-compliant engine and its aftertreatment system (ATS). The setup was installed on a transient engine dyno instrumented with emission measurement devices.
Technical Paper

Particulate Matter (PM) Emissions of Euro 5 and Euro 6 Vehicles Using Systems with Evaporation Tube or Catalytic Stripper and 23 nm or 10 nm Counters

2020-09-15
2020-01-2203
Particle number (PN) emission limits were introduced in the European Union’s regulations for light-duty and heavy duty vehicles in the years 2011-2014. Since then, PN measurements have become a common practice in the automotive sector. Many studies showed that the current methodology, which counts particles >23 nm, misses a large fraction of particles for some engine technologies, such as port fuel injection vehicles or vehicles fueled with compressed natural gas (CNG). However, data for the latest technology vehicles are lacking. For this reason, we measured PN emissions >23 nm and >10 nm of >30 CNG, gasoline and diesel-fueled vehicles. Two systems were measuring in parallel from the full dilution tunnel; one with an evaporation tube and the other with a catalytic stripper. The PN emission levels spanned over three orders of magnitude depending on whether there was a particulate filter installed or not.
Technical Paper

An Analysis of Emissions at Low Ambient Temperature from Diesel Passenger Cars Using the WLTP Test Procedure

2020-09-15
2020-01-2186
The aim of this paper is to analyse the results of regulated and unregulated emissions and carbon dioxide (CO2) emissions of passenger cars equipped with compression-ignition engines that meet the emission Euro 6d standards. Both test vehicles featured selective catalytic reduction (SCR) systems for control of oxides of nitrogen (NOx) and one vehicle also featured a passive NOx absorber (PNA). Research was performed using the current European Union exhaust emission test methods for passenger cars (Worldwide harmonized Light vehicles Test Procedures (WLTP)). Emission testing was performed on a chassis dynamometer, within a climatic chamber, at two different ambient temperatures: 23°C (i.e. Type I test) and -7°C (known as a Type VI test - currently not required for this engine type according to EU legislative requirements).
Journal Article

Regulated and Unregulated Exhaust Emissions from CNG Fueled Vehicles in Light of Euro 6 Regulations and the New WLTP/GTR 15 Test Procedure

2015-04-14
2015-01-1061
The aim of this paper was to explore the influence of CNG fuel on emissions from light-duty vehicles in the context of the new Euro 6 emissions requirements and to compare exhaust emissions of the vehicles fueled with CNG and with gasoline. Emissions testing was performed on a chassis dynamometer according to the current EU legislative test method, over the New European Driving Cycle (NEDC). Additional tests were also performed on one of the test vehicles over the World Harmonized Light Vehicles Test Cycle (WLTC) according to the Global Technical Regulation No. 15 test procedure. The focus was on regulated exhaust emissions; both legislative (CVS-bag) and modal (continuous) analyses of the following gases were performed: CO (carbon monoxide), THC (total hydrocarbons), CH4 (methane), NMHC (non-methane hydrocarbons), NOx (oxides of nitrogen) and CO2 (carbon dioxide).
Technical Paper

RDE-Compliant PEMS Testing of a Gasoline Euro 6d-TEMP Passenger Car at Two Ambient Temperatures with a Focus on the Cold Start Effect

2020-04-14
2020-01-0379
European Union RDE (real driving emissions) legislation requires that new vehicles be subjected to emissions tests on public roads. Performing emissions testing outside a laboratory setting immediately raises the question of the impact of ambient conditions - especially temperature - on the results. In the spirit of RDE legislation, a wide range of ambient temperatures are permissible, with mathematical moderation (correction) of the results only permissible for ambient temperatures <0°C and >+30°C. Within the standard range of temperatures (0°C to +30°C), no correction for temperature is applied to emissions results and the applicable emissions limits have to be met. Given the well-known link between the thermal state of an engine and its emissions following cold start, ambient temperature can be of great importance in determining whether a vehicle meets emissions requirements during an RDE test.
Journal Article

An Investigation into Cold Start Emissions from Compression Ignition Engines using EU Legislative Emissions Test Procedures

2013-04-08
2013-01-1304
Diesel (compression ignition, CI) engines are increasingly exploited in light-duty vehicles, due to their high efficiency and favorable characteristics. Limited work has been performed on CI cold-start emissions at low temperatures. This paper presents a discussion and a brief literature review of diesel cold-start emissions phenomena at low ambient temperatures and the results of tests performed on two European light-duty vehicles with Euro 5 CI engines. The tests were performed on a chassis dynamometer within an advanced climate-controlled test laboratory at BOSMAL Automotive Research and Development Institute, Poland to determine the deterioration in emission of gaseous (HC, CO, NOx, CO2) and solid (PM, PN) pollutants following the EU legislative test procedure (testing at 20°C to 30°C and at -7°C, performed over the NEDC). The tests revealed appreciable increases in emissions of regulated pollutants.
Journal Article

Low Ambient Temperature Cold Start Emissions of Gaseous and Solid Pollutants from Euro 5 Vehicles featuring Direct and Indirect Injection Spark-Ignition Engines

2013-09-08
2013-24-0174
Spark ignition (SI) engines are susceptible to excess emissions at low ambient temperatures. Direct injection leads to the formation of particulate matter (PM), and direct injection spark ignition (DISI) engines should show greater PM emissions at low ambient temperatures. This study compares excess emissions of gaseous and solid pollutants following cold start at a low ambient temperature and the standard test temperature. Euro 5 passenger cars were tested on a chassis dynamometer within BOSMAL's climate-controlled test chamber, according to European Union legislation (−7°C over the urban driving cycle (UDC), and at 25°C). Two vehicles were also tested over the entire New European Driving Cycle (NEDC). Emissions of regulated compounds and carbon dioxide were analyzed; particulate emissions (both mass and number) were also measured, all using standard procedures.
Journal Article

The Impact of Fuel Ethanol Content on Particulate Emissions from Light-Duty Vehicles Featuring Spark Ignition Engines

2014-04-01
2014-01-1463
Ethanol has long been a fuel of considerable interest for use as an automotive fuel in spark ignition (SI) internal combustion engines. In recent years, concerns over oil supplies, sustainability and geopolitical factors have lead multiple jurisdictions to mandate the blending of ethanol into standard gasoline. The impact of blend ethanol content on gaseous emissions has been widely studied; particulate matter emissions have received somewhat less attention, despite these emissions being regulated in the USA. Currently, in the EU particulate matter emissions from SI engines are partially regulated - only vehicles featuring direct injection SI engines are subject to emissions limits. A range of experiments was conducted to determine the impact of fuel ethanol content on the emissions of solid pollutants from Euro 5 passenger cars.
Technical Paper

A Comparison of Tailpipe Gaseous Emissions from the RDE and WLTP Test Procedures on a Hybrid Passenger Car

2020-09-15
2020-01-2217
Non-plugin hybrids represent a technology with the capability to significantly reduce fuel consumption (FC), without any changes to refuelling infrastructure. The EU market share for this vehicle type in the passenger car segment was 3% in 2018 and this powertrain type remains of interest as an option to meet the European Union (EU) fleet average CO2 limits. EU legislative procedures require emissions limits to be met during the chassis dynamometer test and in the on-road real driving emissions (RDE) test, while official CO2/FC figures are quantified via the laboratory chassis dynamometer test only. This study employed both legislative test procedures and compared the results. Laboratory (chassis) dynamometer testing was conducted using the Worldwide Harmonised Light Vehicles Test Procedure (WLTP). On-road testing was carried out in accordance with RDE requirements, measuring the concentration of regulated gaseous emissions and the number of solid particles (PN).
Technical Paper

Analysis of Uncertainty of the Emission Measurement of Gaseous Pollutants on Chassis Dynamometer

2007-04-16
2007-01-1324
This paper evaluates the accuracy of emission measurement of regulated gaseous pollutants from vehicles tested on chassis dynamometers. The paper describes sources of error during exhaust emissions measurement. A model of uncertainty using statistical analysis and standard uncertainty propagation techniques has been used. The model, based on individual uncertainties of different instruments used in the measurement process, as well statistical analysis evaluating uncertainties resulting from the errors introduced by the vehicle, the driver and the chassis dynamometer were all used to compute the total uncertainty of the emission measurement. The paper shows that current CVS system and analytical techniques used to measure exhaust emissions are not sufficient to meet Euro 5 standards. Either an improvement to the CVS system or the development of a new emission sampling system is a prerequisite to measure the emissions from vehicles complying with Euro 5 or SULEV.
Technical Paper

A Study of RME-Based Biodiesel Blend Influence on Performance, Reliability and Emissions from Modern Light-Duty Diesel Engines

2008-04-14
2008-01-1398
The paper evaluates the possibility of using different biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4/ Euro 5 direct-injection, common-rail, turbocharged, light-duty diesel engines. The influence of different quantity of RME in biodiesel blends (B5, B20, B30) on the emission measurement of gaseous pollutants, such as: carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), carbon dioxide (CO2) and particulate matter (PM) for light-duty-vehicle (LDV) during NEDC cycle on the chassis dynamometer as well as engine performance and reliability in engine dyno tests were analysed. All test results presented have been to standard diesel fuel. The measurement and analysis illustrate the capability of modern light-duty European diesel engines fueled with low and medium percentages of RME in biodiesel fuel with few problems.
Technical Paper

The Effect of Pure RME and Biodiesel Blends with High RME Content on Exhaust Emissions from a Light Duty Diesel Engine

2009-11-02
2009-01-2653
The use of biofuels (biodiesel and gasoline-alcohol blends) in vehicle powertrains has grown in recent years in European Union, the United States, Japan, India, Brazil and many other countries due to limited fossil fuel sources and necessary reduction of anthropogenic CO2 emissions. European car manufacturers have approved up to 5 percent of biodiesel blend in diesel fuel (B5 biodiesel blend) which meets European fuel standards EN 14214 and EN 590. The goal for research is to achieve higher biodiesel content in diesel fuel B10 and B20, without resorting to larger diesel engines and fuel feed system modernization. This paper evaluates the possibility of using higher FAME content in biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4 vehicle with direct-injection, common-rail and turbocharged light-duty diesel engine with standard engine ECU calibration and standard injection equipment (not tuned for biodiesel).
Technical Paper

The Influence of Oxygenated Diesel Fuels on a Diesel Vehicle PM/NOx Emission Trade-Off

2009-11-02
2009-01-2696
Research on the influence of oxygenated diesel fuels on the PM/NOx emission trade-off was carried out with use of 11 different synthetic oxygenated compounds, representing 3 chemical groups (glycol ethers, maleates, carbonates). Each of oxygenates were evaluated as a fuel additive at a concentration of 5% v/v in the same base diesel fuel. The tests were conducted on a passenger car equipped with a common rail turbocharged diesel engine over the European cycle NEDC and US FTP-75 cycle. All the tested oxygenates caused a reduction in PM emissions and most of them caused a certain increase in NOx emissions. The changes in emissions depended on the oxygenate type and cycle. In general, the favorable and unfavorable influence of oxygenated compounds was more intensive during the NEDC, which is a softer and less transient cycle than the FTP-75. The most favorable changes in the PM/NOx emission trade-off were obtained for maleates and carbonates.
Technical Paper

The Comparison of the Emissions from Light Duty Vehicle in On-road and NEDC Tests

2010-04-12
2010-01-1298
The investigations into the emissions from light-duty vehicles have been carried out on a chassis dynamometer (NEDC test in Europe and FTP75 test in the US). Such tests do not entirely reflect the real road conditions and that is why we should analyze the correlation of the laboratory versus on-road test results. The paper presents the on-road test results obtained in an urban and extra urban cycles. For these measurements a portable SEMTECH DS analyzer by SENSORS has been used. The device is an analyzer enabling an on-line measurement of the emission gases concentration in a real driving cycle under real road conditions. The road tests were performed on road portions of several kilometers each. The obtained results were compared with the results obtained for the same vehicle during the NEDC test on a chassis dynamometer. The comparative analysis was performed including the urban and extra-urban cycles.
Technical Paper

Analysis of the Influence of Fuel Sulphur Content on Diesel Engine Particulate Emissions

2002-07-09
2002-01-2219
The motor vehicle is one of the main sources of pollutant emissions, especially in urban areas. Environmentally friendly fuels are regarded as very effective means to decrease emissions. With regard to diesel engines, the reduction in nitrogen oxides and particulates are major problem areas. Although the fuel influence on NOx is comparatively low, the composition and parameters of diesel fuel have a big influence on particulate emissions and composition. Sulphur content is one of fuel proprieties, which has the most considerable influence on particulates. This paper describes results of the research on particulate emissions from diesel engines fuelled with research fuels of differing sulphur content. The sulphur content of the research fuels varied from 2000 ppm through 350 ppm (EURO III) and 50 ppm (EURO IV limit, which will be in force in the European Community from 1 January 2005) up to less than 5 ppm.
Technical Paper

Exhaust Emissions of Gaseous and Solid Pollutants Measured over the NEDC, FTP-75 and WLTC Chassis Dynamometer Driving Cycles

2016-04-05
2016-01-1008
Concern over greenhouse gas (GHG) emissions and air quality has made exhaust emissions from passenger cars a topic interest at an international level. This situation has led to the re-evaluation of testing procedures in order to produce more “representative” results. Laboratory procedures for testing exhaust emissions are built around a driving cycle. Cycles may be developed in one context but later used in another: for example, the New European Driving Cycle (NEDC) was not developed to measure fuel consumption, but has ended up being used to that end. The new Worldwide harmonized Light vehicles Test cycle (the WLTC) will sooner or later be used for measuring regulated exhaust emissions. Legal limits for emissions of regulated pollutants are inherently linked to the test conditions (and therefore to the driving cycle); inter-cycle correlations for regulated pollutants are an important research direction.
Technical Paper

Analysis of Emission Factors in RDE Tests As Well as in NEDC and WLTC Chassis Dynamometer Tests

2016-04-05
2016-01-0980
This paper presents a study of passenger cars in terms of emissions measurements in tests conducted under real driving conditions (RDE - Real Driving Emissions) by means of PEMS (Portable Emission Measurement System) equipment. A special feature of the RDE tests presented in this paper is that they were performed under Polish conditions and the specified parameters may differ from those in most other European Union countries. Emission correction coefficients have been defined, based on the test results, equal to the increase (or decrease) of driving emissions during the laboratory (‘chassis dyno’) test or during normal usage in relation to the EU emission standards (emission class) of the vehicle.
Technical Paper

Investigations into Exhaust Particulate Emissions from Multiple Vehicle Types Running on Two Chassis Dynamometer Driving Cycles

2017-03-28
2017-01-1007
This paper reports testing conducted on multiple vehicle types over two European legislative driving cycles (the current NEDC and the incoming WLTC), using a mixture of legislative and non-legislative measurement devices to characterise the particulate emissions and examine the impact of the test cycle and certain vehicle characteristics (engine/fuel type, idle stop system, inertia) on particulate emissions. European legislative measurement techniques were successfully used to quantify particle mass (PM) and number (PN); an AVL Microsoot sensor was also used. Overall, the two driving cycles used in this study had a relatively limited impact on particulate emissions from the test vehicles, but certain differences were visible and in some cases statistically significant.
Technical Paper

The Effect of Various Petrol-Ethanol Blends on Exhaust Emissions and Fuel Consumption of an Unmodified Light-Duty SI Vehicle

2011-09-11
2011-24-0177
Due to limited fossil fuel resources and a need to reduce anthropogenic CO₂ emissions, biofuel usage is increasing in multiple markets. Ethanol produced from the fermentation of biomass has been of interest as a potential partial replacement for petroleum for some time; for spark-ignition engines, bioethanol is the alternative fuel which is currently of greatest interest. At present, the international market for ethanol fuel consists of E85 fuel (with 85 percent ethanol content), as well as lower concentrations of ethanol in petrol for use in standard vehicles (E5, E10). The impact of different petrol-ethanol blends on exhaust emissions from unmodified vehicles remains under investigation. The potential for reduced exhaust emissions, improved security of fuel supply and more sustainable fuel production makes work on the production and usage of ethanol and its blends an increasingly important research topic.
Technical Paper

Excess Emissions and Fuel Consumption of Modern Spark Ignition Passenger Cars at Low Ambient Temperatures

2012-04-16
2012-01-1070
Cold starts are demanding events for spark-ignition (SI) internal combustion engines. When the temperatures of the engine oil, coolant and the engine block are close to the ambient temperature, start-up can be difficult to achieve without fuel enrichment, which results in significant excesses in exhaust emissions and fuel consumption. In general, the lower the ambient temperature, the more substantial these problems are. Many nations frequently experience sub-zero ambient temperatures, and the European Union (among others) has specified an emissions test at low ambient temperature (-7°C). Passenger cars typically experience one to two cold start events per day, and so both cold starts and the warm-up period that follows are significant in terms of exhaust emissions. This paper examines emissions at low ambient temperatures with a special focus on cold start; emissions are also compared to start-up at a higher ambient temperature (24°C).
X