Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of the Large Type Electric-Driven Refrigerator for the HV Truck

2017-03-28
2017-01-0137
In respect to the present large refrigerator trucks, sub-engine type is the main product, but the basic structure does not change greatly since the introduction for around 50 years. A sub-engine type uses an industrial engine to drive the compressor, and the environmental correspondence such as the fuel consumption, the emission is late remarkably. In addition, most of trucks carry the truck equipment including the refrigerator which consumes fuel about 20% of whole vehicle. Focusing on this point, the following are the reports about the system development plan for fuel consumption reduction of the large size refrigerator truck. New concept is to utilize electrical power from HV system to power the electric-driven refrigerator. We have developed a fully electric-driven refrigerator system, which uses regenerated energy that is dedicated for our refrigerator system.
Technical Paper

Effects of Combustion Chamber Geometry on Diesel Combustion

1986-09-01
861186
A study has been made of an automotive direct-injection diesel engine in order to identify the effects of the combustion chamber geometry on combustion, with special emphasis focused on a re-entrant combustion chamber. Conventional combustion chambers and a re-entrant one were compared in terms of the combustion process, engine performance and NOx and smoke emissions. Heat transfer calculations and heat release analyses show that the re-entrant chamber tends to reduce ignition lag due to the higher temperatures of the wall on which injected fuel impinges. Analyses of turbulent flow characteristics in each chamber indicate that the re-entrant chamber enhances combustion because of the higher in-cylinder velocity accompanied by increased turbulence. Further, analyses of in-cylinder gas samples show lower soot levels in the re-entrant chamber. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by retarding the fuel injection timing.
X