Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Electric Regenerative Power Assisted Brake Algorithm for a Front and Rear Wheel Drive Parallel Hybrid Electric Commercial Van

2008-10-07
2008-01-2606
There is an increasing trend in the worldwide automotive area towards developing hybrid electric vehicles as an intermediate solution to fulfill the new, more stringent pollutant emission level requirements set by governments. Conversion of braking energy into electrical energy stored in the battery through regenerative braking is an important aspect of hybrid electric vehicles that increases their fuel efficiency. This paper presents an electric regenerative power assisted brake algorithm developed to enhance energy efficiency of a front and rear wheel drive parallel hybrid electric commercial vehicle. The commercial vehicle used in this study is a second generation research prototype Ford Transit Parallel Hybrid Electric Van. The existing hydraulic brake system of this van was not altered for reasons of safety and reliability in the case of a problem with regenerative barking.
Technical Paper

Maximizing Overall Efficiency Strategy (MOES) for Power Split Control of a Parallel Hybrid Electric Vehicle

2008-10-07
2008-01-2682
In a Hybrid Electric Vehicle (HEV), the main aim is to decrease the fuel consumption and emissions without significant loss of driving performance. Maximizing Overall Efficiency Strategy (MOES) algorithm, presented here, distributes the power demand among the available paths to the wheels to improve fuel economy. In MOES, the vehicle is considered as a system whose input and output are power capability of consumed fuel and actual power transferred to the road, respectively. The aim of the strategy is to maximize the overall efficiency of the vehicle determined as the ratio of output power to input power. The control algorithm and driver model were prepared within Simulink and used to drive the Carmaker model of the vehicle which is a Ford Transit hybrid electric research prototype van. Simulations were carried out in 3 modes of the vehicle; conventional mode, regenerative braking only mode and full MOES mode to analyze the role of optimization better.
Technical Paper

Puma I5 Diesel Engine Oil Pan Assembly NVH Optimization with Optistruct and AVL-Excite

2008-10-07
2008-01-2721
Comfort ride appears as one of the challenging factors in today's competitive automotive sector. Noise level of the vehicle is an effective parameter for the comfort demand of the customer. Oil-pan is the component which transmits structural borne excitations from engine block to air. Improving the NVH performance of the pan by adding beads is a low cost approach and does not increase the mass. Aim of this study is to improve the stiffness of the Puma I5 engine oil pan assembly and to obtain satisfactory improvement in noise levels while keeping the mass of the oil-pan constant.
Technical Paper

Compliant Control of Electric Power Assisted Steering Systems

2005-11-01
2005-01-3535
In this study, a compliant control strategy is developed, which makes the application of position based control strategies practicable for electric power assisted steering systems. In order to do this, an additional virtual degree of freedom is added to the system, which is stimulated by the torque exerted on the steering wheel by the driver and the pinion position. The electro-actuator modeled on the second pinion of the steering gear is then commanded to position the pinion to the virtual system position using a traditional position control strategy. Thus, a compliance behavior is established that can be varied depending on the vehicle states and environmental conditions to improve the vehicle dynamics and safety of the passenger.
X