Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Theoretical Investigation of Spokes Geometry of Non-Pneumatic Tires for Off-Road Vehicles

2021-04-06
2021-01-0331
Extensive studies of off-road non-pneumatic tires (NPTs) were conducted for light and heavy equipment due to their advantages over conventional pneumatic tires in terms of low rolling resistance, thus no need for air pressure maintenance. Finite element (FE) simulations of NPT contact pressure, contact shear stress, vertical stiffness, von mises stress, and rolling resistance were performed using ABAQUS software in a series of vertical loads to simulate tire models of three different spokes geometries on unpaved soil to verify NPT performance under different conditions. The spokes geometries were hexagonal (honeycomb) spoke, hexagonal re-entrant (Lattice) spoke and spoke with curvature called spoke pairs. It was found that the rolling resistance of the honeycomb structure has the lowest value, while the contact shear stress and contact pressure were the highest.
Technical Paper

New Suspension Design for Heavy Duty Trucks: Dynamic Considerations

2000-12-04
2000-01-3447
It is well known that the excessive levels of vibration in heavy vehicles negatively affect driver comfortability, cargo safety and road condition. The current challenge in the field of suspension design for heavy vehicles is to optimize the suspension dynamic parameters to improve such requirements. Almost all of the previous work in this field is based on applying the mathematical optimization considering active or passive suspension systems to obtain the optimal dynamic parameters. In this work a new passive suspension systems for heavy trucks is suggested and compared with the conventional passive suspension systems. The new systems rely on transferring the vertical motion, (vibration), into horizontal motion through a bell-crank mechanism to be taken by a horizontal passive suspension system. The system dynamic parameters like body acceleration, suspension travel and dynamic tire load are calculated assuming random excitation due to road irregularities.
Technical Paper

New Suspension Design for Heavy Duty Trucks: Design Considerations

2003-11-10
2003-01-3428
The present paper presents design considerations for a new tandem suspension system equipped with hydro-pneumatic components. The theory of the new suspension and its configuration were presented in a previously published SAE paper, [1]. In this design, most of the vertical motions were transformed into horizontal motions through two bell cranks. A hydraulic actuator is installed horizontally between the bell cranks and connected to an accumulator (gas spring) via a flow constriction (damper). Incorporating of hydro-pneumatic components in the new suspension system exhibits simple and applicable design. Moreover, further developments including active or semi-active vibration control systems, can be applied directly using the existing hydro-pneumatic components. Mathematical models are constructed to simulate the vehicle ride dynamics. Equations of motion are generated considering a conventional passive suspension (four springs tandem suspension) and the new designed suspension system.
X