Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

A New Validation of Spray Penetration Models for Modern Heavy Duty Diesel Fuel Injectors

2017-03-28
2017-01-0826
The performance of five positive k-factor injector tips has been assessed in this work by analyzing a comprehensive set of injected mass, momentum, and spray measurements. Using high speed shadowgraphs of the injected diesel plumes, the sensitivities of measured vapor penetration and dispersion to injection pressure (100-250MPa) and ambient density (20-52 kg/m3) have been compared with the Naber-Siebers empirical spray model to gain understanding of second order effects of orifice diameter. Varying in size from 137 to 353μm, the orifice diameters and corresponding injector tips are appropriate for a relatively wide range of engine cylinder sizes (from 0.5 to 5L). In this regime, decreasing the orifice exit diameter was found to reduce spray penetration sensitivity to differential injection pressure. The cone angle and k-factored orifice exit diameter were found to be uncorrelated.
Technical Paper

Numerical Simulation of Quenching Process at Caterpillar

1993-04-01
931172
Caterpillar uses heat treatment to enhance the properties of a significant number of parts. Traditional heat treat process optimization is both time consuming and expensive when done by empirical methods. This paper describes a computer simulation of the heat treatment process, developed by Caterpillar, based upon finite element analysis. This approach combines thermal, microstructural, and stress analysis to accurately model material transformation during quenching. Examples are presented to illustrate the program.
Technical Paper

Coordinated Control of Multi-Degree-of Freedom Fuel Systems

1997-04-01
971559
This paper identifies potential performance benefits and computational costs of applying advanced multivariable control theory concepts to coordinate the control of a general multi-degree-of-freedom fuel system. The control variables are injection duration and pressure. The focus is on the design of a robust multi-input multi-output controller using H-infinity and mu synthesis methodology to coordinate the control of injection duration and pressure; reduce overshoots and system sensitivity to parameter variations caused by component aging. Model reduction techniques are used to reduce the order of the H-infinity controller to make it practically implementable. Computer simulation is used to test the robust performance of a generic engine and fuel system model controlled by the reduced order H-infinity controller and a traditional proportional plus integral controller.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
X