Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Modeling and Calibration of Combine, Impact Plate, Yield Sensors

2010-10-05
2010-01-2002
An effort was undertaken to capture the relationship between the output of mass flow sensors and the input rate of mass flow for harvesting combines with yield monitors. Different types of models were considered that characterize this relationship and that can be applied to a variety of mass flow sensor technologies. Issues such as implementation during harvesting and calibration of these sensors and models were explored. Additionally, an example of such a model and its validation against experimental data was examined. For small-scale laboratory experiments, the model was shown to closely capture the general trend of the data as well as to yield reasonable estimates of the mass flowing through the system based on the sensor output. For large-scale experiments, the model was able to be fitted to the experimental data, and to estimate mass flow rate with relatively low errors across a variety of operating conditions.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Journal Article

Robust Observation of Tractor-trailer Vertical Forces Using Inverse Model and Exact Differentiator

2010-04-12
2010-01-0637
In this paper, we are interested in developing a robust tire-force estimator for heavy duty vehicles. We use a combined model of the articulated vehicle: a yaw plane model for the chassis motion and a vertical plane model for the axles. In the proposed method, we make use of the on-board available sensors to which low-cost sensors are added. In order to optimize the sensors configuration, a robust exact differentiator is used in order to obtain accelerations from the measured velocities. Once the differentiation is obtained, the model is inverted to determine the unknown input forces. The approach is validated by comparing the estimation results to those given by the software simulator prosper .
Journal Article

Electromagnetic Actuator Dynamic Response Prediction for an Automated Mechanical Transmission

2013-05-15
2012-01-2260
Among the many advantages of the hybrid variants of Automated Mechanical Transmissions (AMTs) such as the Dual Clutch Transmission are faster gearshifts and excellent acceleration that comes from reduced drive-train losses without torque interrupts which translates into improved drive quality through smoother shifts. However, actuator system dynamics and controls remain critical challenges to attaining the full benefits of such AMT variants, which demands precise timing and coordination of the actuators. This paper presents a method for modeling a solenoid, including its non-linear electromagnetic characteristics. The model has been validated against experimental measurements. The significance of the work is that an efficient and robust method that allows precise predictions of a hydraulic valve pressure, flow through the system and the position of the hydraulic elements has been devised.
Journal Article

Intelligent Predictive Cruise Control Application Analysis for Commercial Vehicles based on a Commercial Vehicles Usage Study

2013-10-20
2013-01-9022
With the introduction of advanced digital road maps, which include information on the slope and curve radius of the highways, predictive control for standard and hybrid commercial vehicles, based on these maps, is about to be released by the vehicle manufacturers. For example, intelligent predictive cruise control has been announced for introduction in 2012 by Scania and Daimler. In addition, hybrid commercial city buses like MAN's Lion's City Hybrid have already been implemented. But the question remains about the type of vehicle suitable for the implementation of predictive intelligent concepts, due to the high investment cost compared to the sometimes relatively low operating cost savings.
Journal Article

Gearshift Actuator Dynamics Predictions in a Dual Clutch Transmission

2013-10-20
2013-01-9021
Although hybrid variants of Automated Mechanical Transmissions such as the Dual Clutch Transmissions are less affected by driveline torque interrupts, actuator dynamics is very critical in the speed of gear pre-selection and during multiple gear shifts. To avoid torque interrupts, such systems require precise gearshift duration hence the actuators are expected to have fast, stable and predictable responses. However, actuator dynamics and controls remain barriers to attaining the full benefits of such complex systems, demanding precise timing and coordination of the gearshifts alongside the clutches engagement and disengagement. To overcome such challenges, a dynamic model of an electro-hydraulic gearshift actuator, the synchronizer and the shift fork has been developed. The model predicts the gearshift actuator dynamics for a given set of input parameters, which can be correlated against experimental data.
Journal Article

Modularity Adoption in Product Development: A Case Study in the Brazilian Agricultural Machinery Industry

2014-01-15
2013-01-9093
Facing a competitive and globalized market and with increasingly demanding customers, companies must constantly seek the development of practices in the development of new products. One of the current practices is the adoption of modularity. In that sense, the objective of this paper is to conduct an analysis of this practice in a Brazilian company, which manufactures agricultural machinery. The applicability of modular design in current products is focused. Therefore, a case study approach has been chosen. First, a review of the scientific literature was conducted, followed by field research, for collecting data based on interviews with product engineers and technical documentation. The case study shows the applicability of the modular design concept in a combine header, by increasing the number of repeated components. The modular header approach facilitates the implementation of engineering changes and allows greater standardization of components.
Journal Article

A Sequence Retainable Iterative Algorithm for Rainflow Cycle Counting

2014-01-15
2013-01-9091
To get a sequence retainable rainflow cycle counting algorithm for fatigue analysis, an alternate equivalent explanation to rainflow cycle counting is introduced, based on which an iterative rainflow counting algorithm is proposed. The algorithm decomposes any given load-time history with more than one crest into three sub-histories by two troughs; each sub-history with more than one crest is iteratively decomposed into three shorter sub-histories, till each sub-history obtained contains only one single or no crest. Every sub-history that contains a single crest corresponds to a local closed (full) cycle. The mean load and alternate load component of the local cycle are calculated in parallel with the iterative procedure.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Journal Article

Development of SCR on High Porosity Substrates for Heavy Duty and Off-Road Applications

2014-04-01
2014-01-1521
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. There is a drive to reduce the overall packaging volume of the aftertreatment system for these applications. In addition, more active SCR catalysts will be needed as the applications become more challenging: e.g. lower temperatures and higher engine out NOx, for fuel consumption improvements. One approach to meet the challenges of reduced volume and/or higher NOx reduction is to increase the active site density of the SCR catalyst by coating higher amount of SCR catalyst on high porosity substrates (HPS). This approach could enable the reduction of the overall packaging volume while maintaining similar NOx conversion as compared to 2010/2013 systems, or improve the NOx reduction performance for equivalent volume and NH3 slip.
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Journal Article

Safe and Eco Friendly Train Traction System with No Rails

2014-09-30
2014-01-2289
In this research paper, a novel train traction system is described. In this system, the vehicle is lifted like a hovercraft by air cushion and the traction is achieved by using horizontally mounted all-wheel drive. Chance of derailment is completely eliminated and wherein even in the event of failure of few traction wheel stations during run, the train remains mobile with absolute safety even at high speeds. All-wheel drive traction is powered by overhead electrification to maintain high power to weight ratio and faster acceleration. In the present invention, no rail is used. This eliminates the enormous cost of laying the complex and expensive railway tracks. Other advantages include the lack of exhaust fumes and carbon emissions at point of use especially in countries where electricity comes primarily from non-fossil sources, less noise, lower maintenance requirements of the traction units.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Experimentally Compared Fuel Consumption Modelling of Refuse Collecting Vehicles for Energy Optimization Purposes

2014-05-09
2014-01-9023
This paper presents a novel methodology to develop and validate fuel consumption models of Refuse Collecting Vehicles (RCVs). The model development is based on the improvement of the classic approach. The validation methodology is based on recording vehicle drive cycles by the use of a low cost data acquisition system and post processing them by the use of GPS and map data. The corrected data are used to feed the mathematical energy models and the fuel consumption is estimated. In order to validate the proposed system, the fuel consumption estimated from these models is compared with real filling station refueling records. This comparison shows that these models are accurate to within 5%.
Journal Article

Model-Based and Signal-Based Gearbox Sensor Fault Detection, Identification and Accommodation

2014-05-09
2014-01-9025
The emergence of tougher environmental legislations and ever increasing demand for increased ride comfort, fuel efficiency, and low emissions have triggered exploration and advances towards more efficient vehicle gearbox technologies. The growing complexity and spatial distribution of such a mechatronic gearbox demands precise timing and coordination of the embedded electronics, integrated sensors and actuators as well as excellent overall reliability. The increased gearbox distributed systems have seen an increased dependence on sensors for feedback control, predominantly relying on hardware redundancy for faults diagnosis. However, the conventional hardware redundancy has disadvantages due to increased costs, weight, volume, power requirements and failure rates. This paper presents a virtual position sensor-based Fault Detection, Isolation and Accommodation (FDIA), which generates an analytical redundancy for comparison against the actual sensor output.
Journal Article

Experimental Assessments of Parallel Hybrid Medium-Duty Truck

2014-05-20
2014-01-9021
Fuel consumption reduction on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The Crankshaft-Integrated-Starter-Generator (C-ISG) is one of the parallel hybrid propulsions to improve the fuel economy. The C-ISG configuration is attractive because one electric machine can be used to propel the vehicle, to start the engine, and to be function as a generator. The C-ISG has been implemented in one M1083A1 5-ton tactical cargo truck. This paper presents the experimental assessments of the C-ISG hybrid truck characteristics. The experimental assessments include all electric range for on- and off-road mission cycles and fuel consumption for the high voltage battery charging. Stationary tests related to the charging profile of the battery pack and the silent watch time duration is also conducted.
Journal Article

Signal-Based Actuators Fault Detection and Isolation for Gearbox Applications

2014-05-09
2014-01-9022
Electro-hydraulic actuated systems are widely used in industrial applications due to high torque density, higher speeds and wide bandwidth operation. However, the complexities and the parametric uncertainties of the hydraulic actuated systems pose challenges in establishing analytical mathematical models. Unlike electro-mechanical and pneumatic systems, the nonlinear dynamics due to dead band, hysteresis, nonlinear pressure flow relations, leakages and friction affects the pressure sensitivity and flow gain by altering the system's transient response, which can introduce asymmetric oscillatory behavior and a lag in the system response. The parametric uncertainties make it imperative to have condition monitoring with in-built diagnostics capability. Timely faults detection and isolation can help mitigate catastrophic failures. This paper presents a signal-based fault diagnostic scheme for a gearbox hydraulic actuator leakage detection using the wavelet transform.
Journal Article

Development Trends for Commercial and Industrial Engines

2014-09-30
2014-01-2325
Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
Journal Article

Fused Dynamics of Unmanned Ground Vehicle Systems

2014-09-30
2014-01-2322
Through inverse dynamics-based modeling and computer simulations for a 6×6 Unmanned Ground Vehicle (UGV) - a 6×6 truck - in stochastic terrain conditions, this paper analytically presents a coupled impact of different driveline system configurations and a suspension design on vehicle dynamics, including vehicle mobility, and energy efficiency. A new approach in this research work involves an estimation of each axle contribution to the level of potential mobility loss/increase and/or energy consumption increase/ reduction. As it is shown, the drive axles of the vehicle interfere with the vehicle's dynamics through the distribution of the wheels' normal reactions and wheel torques. The interference causes the independent system dynamics to become operationally coupled/fused and thus diminishes vehicle mobility and energy efficiency. The analysis is done by the use of new mobility indices and energy efficiency indices which are functionally coupled/fused.
X