Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Trailer Technologies for Increased Heavy-Duty Vehicle Efficiency: Technical, Market, and Policy Considerations

2014-04-01
2014-01-1622
This paper reviews fuel-saving technologies for commercial trailers, provides an overview of the trailer market in the U.S., and explores options for policy measures at the federal level that can promote the development and deployment of trailers with improved efficiency. For trailer aerodynamics, there are many technologies that exist and are in development to target each of the three primary areas where drag occurs: 1) the tractor-trailer gap, 2) the side and underbody of the trailer, and 3) the rear end of the trailer. In addition, there are tire technologies and weight reduction opportunities for trailers, which can lead to reduced rolling resistance and inertial loss. As with the commercial vehicle sector, the trailer market is diverse, and there are a variety of sizes and configurations that are employed to meet a wide range of freight demands.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle

2003-10-27
2003-01-3284
The California Air Resources Board (ARB) developed a Medium Heavy-Duty Truck (MHDT) schedule by selecting and joining microtrips from real-world MHDT. The MHDT consisted of three modes; namely, a Lower Speed Transient, a Higher Speed Transient, and a Cruise mode. The maximum speeds of these modes were 28.9, 58.2 and 66.0 mph, respectively. Each mode represented statistically selected truck behavior patterns in California. The MHDT is intended to be applied to emissions characterization of trucks (14,001 to 33,000lb gross vehicle weight) exercised on a chassis dynamometer. This paper presents the creation of the MHDT and an examination of repeatability of emissions data from MHDT driven through this schedule. Two trucks were procured to acquire data using the MHDT schedule. The first, a GMC truck with an 8.2-liter Isuzu engine and a standard transmission, was tested at laden weight (90% GVW, 17,550lb) and at unladen weight (50% GVW, 9,750lb).
Technical Paper

Operating Envelopes of Hybrid Bus Engines

2001-09-24
2001-01-3537
Recent chassis testing of hybrid buses demonstrated the potential of hybrid technology to reduce emissions and raise fuel economy relative to conventional buses. However, hybrid buses represent a certification quandary because the engines must be certified using the accepted Federal Test Procedure (FTP), without regard for benefits that may arise from less transient engine operation. Actual engine operating data from series configuration hybrid buses were analyzed to determine the envelopes of torque and speeds covered by the engine. Transient engine operation was also considered in terms of rates of change of torque, power and speed. These measures did not compare closely with similar measures computed from the FTP because the series hybrid engines explored a more structured zone of operation than the FTP implied and because the FTP represented more transient operation.
Technical Paper

Measurement of Brake-specific NOX Emissions using Zirconia Sensors for In-use, On-board Heavy-duty Vehicle Applications

2002-05-06
2002-01-1755
Emissions tests for heavy -duty diesel-fueled engines and vehicles are normally performed using engine dynamometers and chassis dynamometers, respectively, with laboratory grade gaseous concentration measurement analyzers and supporting test equipment. However, a considerable effort has been recently expended on developing in-use, on-board tools to measure brake-specific emissions from heavy -duty vehicles with the highest degree of accuracy and precision. This alternative testing methodology would supplement the emissions data that is collected from engine and chassis dynamometer tests. The on-board emissions testing methodology entails actively recording emissions and vehicle operating parameters (engine speed and load, vehicle speed etc.) from vehicles while they are operating on the road. This paper focuses on in-use measurements of NOX with zirconium oxide sensors and other portable NOX detectors.
Technical Paper

Development and Initial Use of a Heavy-Duty Diesel Truck Test Schedule for Emissions Characterization

2002-05-06
2002-01-1753
In characterizing the emissions from mobile sources, it is essential that the vehicle be exercised in a way that reasonably represents typical in-use behavior. A heavy-heavy duty diesel truck (HHDDT) test schedule was developed from speed-time data gathered during two Air Resources Board-sponsored truck activity programs. The data were divided into four modes, termed Idle, Creep, Transient and Cruise Modes, in order of increasing speed. For the last three modes, speed-time schedules were created that represented all the data in that mode. Statistical parameters such as average speed, stops per unit distance, kinetic energy, maximum speed and acceleration and deceleration values were considered in arriving at these schedules. The schedules were evaluated using two Class 8 over-the-road tractors on a chassis dynamometer. Emissions were measured using a full-scale dilution tunnel, filtration for particulate matter (PM), and research grade analyzers for the gases.
Technical Paper

Evaluation of Methods for Determining Continuous Particulate Matter from Transient Testing of Heavy-Duty Diesel Engines

2001-09-24
2001-01-3575
The historical lack of continuous data for PM emissions from heavy-duty diesel engines hampers advanced inventory approaches and hampers second-by-second engine control optimization. Continuos PM data can be obtained using a Tapered Element Oscillating Microbalance (TEOM), but moisture correction of data is needed to remove unwanted transient components of the mass. Reasonable correlation can be found between TEOM data integrated over the cycle and conventional PM filter data. Considerable scatter was evident when continuous TEOM data were plotted against instantaneous power, but by dispersing the power in time a clearer relationship was evident. Continuous TEOM data showed the same gross trends as PM filter mass distributed over a cycle in proportion to instantaneous CO, but it was evident that this CO proportioning technique is at best approximate. Binning of PM mass rate as a function of vehicle speed and acceleration were also evaluated for inventory purposes.
Technical Paper

Relationships Between Instantaneous and Measured Emissions in Heavy Duty Applications

2001-09-24
2001-01-3536
Selective Catalytic Reduction (SCR), using urea injection, is being examined as a method for substantial reduction of oxides of nitrogen (NOx) for diesel engines, but the urea injection rates must be controlled to match the NOx production which may need to be predicted during open loop control. Unfortunately NOx is usually measured in the laboratory using a full-scale dilution tunnel and chemiluminescent analyzer, which cause delay and diffusion (in time) of the true manifold NOx concentration. Similarly, delay and diffusion of measurements of all emissions cause the task of creating instantaneous emissions models for vehicle simulations more difficult. Data were obtained to relate injections of carbon dioxide (CO2) into a tunnel with analyzer measurements. The analyzer response was found to match a gamma distribution of the input pulse, so that the analyzer output could be modeled from the tunnel CO2 input.
Technical Paper

Emissions Modeling of Heavy-Duty Conventional and Hybrid Electric Vehicles

2001-09-24
2001-01-3675
Today's computer-based vehicle operation simulators use engine speed, engine torque, and lookup tables to predict emissions during a driving simulation [1]. This approach is used primarily for light and medium-duty vehicles, with large discrepancies inherently due to the lack of transient engine emissions data and inaccurate emissions prediction methods [2]. West Virginia University (WVU) has developed an artificial neural network (ANN) based emissions model for incorporation into the ADvanced VehIcle SimulatOR (ADVISOR) software package developed by the National Renewable Energy Laboratory (NREL). Transient engine dynamometer tests were conducted to obtain training data for the ANN. The ANN was trained to predict carbon dioxide (CO2) and oxides of nitrogen (NOx) emissions based on engine speed, torque, and their representative first and second derivatives over various time ranges.
Technical Paper

Reduction of PM Emissions from Refuse Trucks through Retrofit of Diesel Particulate Filters

2003-05-19
2003-01-1887
Diesel particulate matter emissions, because they do not disperse as readily gaseous emissions, have a very localized effect and eventually settle to the ground not far from where they were emitted. One subset of heavy-duty diesel vehicles that warrant further attention for controlling particulate emissions matter is sanitation trucks. Cummins Inc. and West Virginia University investigated particulate emissions reduction technologies for New York City Department of Sanitation refuse trucks under the EPA Consent Decree program. Regulated emissions were measured on four retrofitted sanitation trucks with and without the DPF installed. Cummins engines powered all of the retrofitted trucks. The Engelhard DPX reduced PM emissions by 97% and 84% on the New York Garbage Truck Cycle (NYGTC) and Orange County Refuse Truck Cycle (OCRTC) respectively. The Johnson-Matthey CRT system reduced PM emissions by 81% and 87% over the NYGTC and OCRTC respectively.
Technical Paper

Concentrations and Size Distributions of Particulate Matter Emissions from a Class-8 Heavy-duty Diesel Truck Tested in a Wind Tunnel

2003-05-19
2003-01-1894
In an effort to develop engine/vehicle test methods that will reflect real-world emission characteristics, West Virginia University (WVU) designed and conducted a study on a Class-8 tractor with an electronically controlled diesel engine that was mounted on a chassis dynamometer in the Old Dominion University Langley full-scale wind tunnel. With wind speeds set at 88 km/hr in the tunnel, and the tractor operating at 88 km/hr on the chassis dynamometer, a Scanning Mobility Particle Sizer (SMPS) was employed for measuring PM size distributions and concentrations. The SMPS was housed in a container that was attached to a three-axis gantry in the wind tunnel. Background PM size-distributions were measured with another SMPS unit that was located upstream of the truck plume. Ambient temperatures were recorded at each of the sampling locations. The truck was also operated through transient tests with vehicle speeds varying from 65 to 88 km/hr, with a wind speed of 76 km/hr.
Technical Paper

HEAVY DUTY VEHICLE EXHAUST PLUME STUDY IN THE NASA/LANGLEY WIND TUNNEL

2003-05-19
2003-01-1895
Concern over health effects associated with diesel exhaust and debate over the influence of high number counts of particles in diesel exhaust prompted research to develop a methodology for diesel particulate matter (PM) characterization. As part of this program, a tractor truck with an electronically managed diesel engine and a dynamometer were installed in the Old Dominion University (ODU) Langley full-scale wind tunnel. This arrangement permitted repeat measurements of diesel exhaust under realistic and reproducible conditions and permitted examination of the steady exhaust plume at multiple points. Background particle size distribution was characterized using a Scanning Mobility Particle Sizer (SMPS). In addition, a remote sampling system consisting of a SMPS, PM filter arrangement, and carbon dioxide (CO2) analyzer, was attached to a roving gantry allowing for exhaust plume sampling in a three dimensional grid. Raw exhaust CO2 levels and truck performance data were also measured.
Technical Paper

Emissions from Diesel-Fueled Heavy-Duty Vehicles in Southern California

2003-05-19
2003-01-1901
Few real-world data exist to describe the contribution of diesel vehicles to the emissions inventory, although it is widely acknowledged that diesel vehicles are a significant contributor to oxides of nitrogen (NOx) and particulate matter (PM) in Southern California. New data were acquired during the Gasoline/Diesel PM Split Study, designed to collect emissions data for source profiling of PM emissions from diesel- and gasoline-powered engines in the South Coast (Los Angeles) Air Basin in 2001. Regulated gases, PM and carbon dioxide (CO2) were measured from 34 diesel vehicles operating in the Southern California area. Two were transit buses, 16 were trucks over 33,000 lbs. in weight, 8 were 14,001 lbs. to 33,000 lbs. in weight and 8 were under 14,001 lbs. in weight. The vehicles were also grouped by model year for recruiting and data analysis.
Technical Paper

Fresh and Aged SCRT Systems Retrofitted on a MY 1998 Class-8 Tractor: Investigation on In-use Emissions

2011-09-11
2011-24-0175
In order to comply with stringent 2010 US-Environmental Protection Agency (EPA) on-road, Heavy-Duty Diesel (HDD) emissions regulations, the Selective Catalytic Reduction (SCR) aftertreatment system has been judged by a multitude of engine manufacturers as the primary technology for mitigating emissions of oxides of nitrogen (NOx). As virtually stand-alone aftertreatment systems, SCR technology further represents a very flexible and efficient solution for retrofitting legacy diesel engines as the most straightforward means of cost-effective compliance attainment. However, the addition of a reducing agent injection system as well as the inherent operation limitations of the SCR system due to required catalyst bed temperatures introduce new, unique problems, most notably that of ammonia (NH₃) slip.
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

2013-09-08
2013-24-0181
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Technical Paper

Greenhouse Gas Emissions of MY 2010 Advanced Heavy Duty Diesel Engine Measured Over a Cross-Continental Trip of USA

2013-09-08
2013-24-0170
The study was aimed at assessing in-use emissions of a USEPA 2010 emissions-compliant heavy-duty diesel vehicle powered by a model year (MY) 2011 engine using West Virginia University's Transportable Emissions Measurement System (TEMS). The TEMS houses full-scale CVS dilution tunnel and laboratory-grade emissions measurement systems, which are compliant with the Code of Federal Regulation (CFR), Title 40, Part 1065 [1] emissions measurement specifications. One of the specific objectives of the study, and the key topic of this paper, is the quantification of greenhouse gas (GHG) emissions (CO2, N2O and CH4) along with ammonia (NH3) and regulated emissions during real-world operation of a long-haul heavy-duty vehicle, equipped with a diesel particulate filter (DPF) and urea based selective catalytic reduction (SCR) aftertreatment system for PM and NOx reduction, respectively.
Technical Paper

Exhaust Emissions from In-Use Heavy Duty Vehicles Tested on a Transportable Transient Chassis Dynamometer

1992-11-01
922436
Exhaust gas composition and particulate matter emission levels were obtained from in-use heavy duty transit buses powered by 6V-92TA engines with different fuels. Vehicles discussed in this study were pulled out of revenue service for a day, in Phoenix, AZ, Pittsburgh, PA and New York, NY and tested on the Transportable Heavy Duty Vehicle Emissions Testing Laboratory employing a transient chassis dynamometer. All the vehicles, with engine model years ranging from 1982 to 1992, were operated on the Federal Transit Administration Central Business District Cycle. Significant reductions in particulate matter emissions were observed in the 1990-1992 model year vehicles equipped with the trap oxidizer systems. Testing vehicles under conditions that represent “real world” situations confirmed the fact brought to light that emission levels are highly dependent upon the maintenance and operating conditions of the engines.
Technical Paper

Determination of Heavy-Duty Vehicle Energy Consumption by a Chassis Dynamometer

1992-11-01
922435
The federal emission standards for heavy duty vehicle engines require the exhaust emissions to be measured and calculated in unit form as grams per break horse-power-hour (g/bhp-hr). Correct emission results not only depend on the precise emission measurement but also rely on the correct determination of vehicle energy consumption. A Transportable Heavy-Duty Vehicle Emission Testing Laboratory (THDVETL) designed and constructed at West Virginia University provides accurate vehicle emissions measurements in grams over a test cycle. This paper contributes a method for measuring the energy consumption (bhp-hr) over the test cycle by a chassis dynamometer. Comparisons of analytical and experimental results show that an acceptable agreement is reached and that the THDVETL provides accurate responses as the vehicle is operated under transient loads and speeds. This testing laboratory will have particular value in comparing the behavior of vehicles operating on alternative fuels.
Technical Paper

Emissions Comparisons of Twenty-Six Heavy-Duty Vehicles Operated on Conventional and Alternative Fuels

1993-11-01
932952
Gaseous and particulate emissions from heavy-duty vehicles are affected by fuel types, vehicle/engine parameters, driving characteristics, and environmental conditions. Transient chassis tests were conducted on twenty-six heavy-duty vehicles fueled with methanol, compressed natural gas (CNG), #1 diesel, and #2 diesel, using West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory. The vehicles were operated on the central business district (CBD) testing cycle, and regulated emissions of carbon monoxide (CO), total hydrocarbon (HC), nitrogen oxides (NOx), and particulate matter (PM) were measured. Comparisons of regulated emissions results revealed that the vehicles powered on methanol and CNG produced much lower particulate emissions than the conventionally fueled vehicles.
X