Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Technical Paper

Assessment of Soot Particles in an Exhaust Gas for Low Temperature Diesel Combustion with High EGR in a Heavy Duty Compression Ignition Engine

2013-10-14
2013-01-2572
The characteristics of soot particles in an exhaust gas for low temperature diesel combustion (LTC) compared with conventional combustion in a compression ignition engine were experimentally investigated by the elemental and thermogravimetric analysis (TGA). Morphology of soot particles was also studied by the transmission electron microscopy (TEM). From the result of the TGA, the water can be evaporated until about 150°C for both combustion regimes. The soot particles for LTC contained more volatile hydrocarbons, which can be easily evaporated from 200°C to 420°C compared with conventional diesel combustion. The soot oxidation for conventional combustion occurs up to 600°C, on the other hand the particles for LTC is oxidized below 520°C. Elemental analysis showed higher oxygen weight fraction resulted from the oxygenated hydrocarbon for the soot particles in LTC. TEM has shown primary particles to be in a diameter range of 20 to 50 nm for conventional diesel combustion.
Technical Paper

Fuel Economy and Power Benefits of Cetane-Improved Fuels in Heavy-Duty Diesel Engines

1997-10-01
972900
A program to explore the effects of natural and additive-derived cetane on various aspects of diesel performance and combustion has been carried out. Procedures have been developed to measure diesel engine fuel consumption and power to a high degree of precision. These methods have been used to measure fuel consumption and power in three heavy-duty direct-injection diesel engines. The fuel matrix consisted of three commercial fuels of cetane number (CN) of 40-42, the same fuels raised to CN 48-50 with a cetane improver additive, and three commercial fuels of base CN 47-50. The engines came from three different U.S. manufacturers and were of three different model years and emissions configurations. Both fuel economy and power were found to be significantly higher for the cetane-improved fuels than for the naturally high cetane fuels. These performance advantages derive mainly from the higher volumetric heat content inherent to the cetane-improved fuels.
Technical Paper

A Simulation Based Comprehensive Performance Evaluation of Cat® C4.4 Current Production Engine with its Split Cycle Clean Combustion Variant using a Validated One-Dimensional Modeling Methodology

2013-09-24
2013-01-2434
This paper uses a one-dimensional (1-D) simulation based approach to compare the steady state and transient performance of a Split Cycle Clean Combustion (SCCC) diesel engine to a similarly sized conventional diesel engine. Caterpillar Inc's one-dimensional modeling tool “Dynasty” is used to convert the simulation model of Caterpillar's current production turbocharged diesel engine Cat® C4.4 (used in their Hydraulic Excavator 316) to operate on the SCCC cycle. Steady state and transient engine performance is compared between the two engine variants. This study is focused only on the performance aspects of engine and relies on the other independently published papers for emissions prediction. This paper also demonstrates the use of Caterpillar's proprietary modeling software Dynasty to replicate the two cylinder SCCC engine model presented by University of Pisa in their paper [2].
Technical Paper

Impact of Effective Compression Ratio on Gasoline-Diesel Dual-Fuel Combustion in a Heavy-Duty Engine Using Variable Valve Actuation

2015-09-01
2015-01-1796
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
Book

Homogeneous Charge Compression Ignition (HCCI) Engines

2003-03-03
The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems.
X